/MOFTransformer

Universal Transfer Learning for MOF

Primary LanguagePython

Docs PypI Figshare DOI Lincense

Do you train machine learning models for every application? This package provides universal transfer learing for metal-organic frameworks(MOFs) to construct structure-property relationships. MOFTransformer obtains state-of-the-art performance to predict accross various properties that include gas adsorption, diffusion, electronic properties regardless of gas types. Beyond its universal transfer learning capabilityies, it provides feature importance analysis from its attentions scores to capture chemical intution.

  • Depedencies
python>=3.8

Installation using PIP

$ pip install moftransfomer

Installation from github repository

  • you can also download from the github repository.
$ git clone https://github.com/hspark1212/MOFTransformer.git
$ cd moftransformer
$ python setup.py install

Download the pretrained model (ckpt file)

  • you can download the pretrained model with 1 M hMOFs in figshare or you can download with a command line:
$ moftransformer download pretrain_model

(Optional) Download dataset for CoREMOF, QMOF

  • we've provide the dataset of MOFTransformer (i.e., atom-based graph embeddings and energy-grid embeddings) for CoREMOF, QMOF
$ moftransformer download coremof
$ moftransformer download qmof
  1. At first, you download dataset of hMOFs (20,000 MOFs) as an example.
$ moftransformer download hmof
  1. Fine-tune the pretrained MOFTransformer.
import moftransformer
from moftransformer.examples import example_path

# data root and downstream from example
data_root = example_path['data_root']
downstream = example_path['downstream']
log_dir = './logs/'

moftransformer.run(data_root, downstream, log_dir=log_dir, 
                   max_epochs=max_epochs, batch_size=batch_size,)
  1. Visualize analysis of feature importance for the fine-tuned model.
%matplotlib widget
from visualize import PatchVisualizer

model_path = "examples/finetuned_bandgap.ckpt" # or 'examples/finetuned_h2_uptake.ckpt'
data_path = 'examples/visualize/dataset/'
cifname = 'MIBQAR01_FSR'

vis = PatchVisualizer.from_cifname(cifname, model_path, data_path)
vis.draw_graph() # or vis.draw_grid()

MOFTransformeris a multi-modal Transformer pre-trained with 1 million hypothetical MOFs so that it efficiently capture both local and global feeatures of MOFs.

  • MOFformer takes two different representations as input
    • Atom-based Graph Embedding : CGCNN w/o pooling layer -> local features
    • Energy-grid Embedding : 1D flatten patches of 3D energy grid -> global features

you can easily visualize feature importance analysis of atom-based graph embeddings and energy-grid embeddings.

%matplotlib widget
from visualize import PatchVisualizer

model_path = "examples/finetuned_bandgap.ckpt" # or 'examples/finetuned_h2_uptake.ckpt'
data_path = 'examples/visualize/dataset/'
cifname = 'MIBQAR01_FSR'

vis = PatchVisualizer.from_cifname(cifname, model_path, data_path)
vis.draw_graph()

vis = PatchVisualizer.from_cifname(cifname, model_path, data_path)
vis.draw_grid()

Universal Transfer Learning

Property MOFTransformer Original Paper Number of Data Remarks Reference
N2 uptake R2: 0.78 R2: 0.71 5,286 CoRE MOF 1
O2 uptake R2: 0.83 R2: 0.74 5,286 CoRE MOF 1
N2 diffusivity R2: 0.77 R2: 0.76 5,286 CoRE MOF 1
O2 diffusivity R2: 0.78 R2: 0.74 5,286 CoRE MOF 1
CO2 Henry coefficient MAE : 0.30 MAE : 0.42 8,183 CoRE MOF 2
Solvent removal stability classification ACC : 0.76 ACC : 0.76 2,148 Text-mining data 3
Thermal stability regression R2 : 0.44 R2 : 0.46 3,098 Text-mining data 3

Reference

  1. Prediction of O2/N2 Selectivity in Metal−Organic Frameworks via High-Throughput Computational Screening and Machine Learning
  2. Using Machine Learning and Data Mining to Leverage Community Knowledge for the Engineering of Stable Metal–Organic Frameworks
  3. Understanding the diversity of the metal-organic framework ecosystem