/PyTorch-VAE

A Collection of Variational Autoencoders (VAE) in PyTorch.

Primary LanguagePythonApache License 2.0Apache-2.0

PyTorch VAE for Numerai

Update 04/14/2022: This fork is written for supporting the Numerai's dataset

A collection of Variational AutoEncoders (VAEs) implemented in pytorch with focus on reproducibility. The aim of this project is to provide a quick and simple working example for many of the cool VAE models out there.

Requirements

  • Python >= 3.5
  • PyTorch >= 1.3
  • Pytorch Lightning >= 0.6.0 (GitHub Repo)
  • CUDA enabled computing device

Installation

$ git clone https://github.com/AntixK/PyTorch-VAE
$ cd PyTorch-VAE
$ pip install -r requirements.txt

Usage

$ cd PyTorch-VAE
$ python3 run.py --config configs/numerai_vae.yaml

View TensorBoard Logs

$ cd logs/<experiment name>/version_<the version you want>
$ tensorboard --logdir .

Note: The default dataset is Numerai's train set. You need to download the train.parquet file from the Numerai's API and set the path in the configs/numerai_vae.yaml file.

License

Apache License 2.0

Permissions Limitations Conditions
✔️ Commercial use ❌ Trademark use ⓘ License and copyright notice
✔️ Modification ❌ Liability ⓘ State changes
✔️ Distribution ❌ Warranty
✔️ Patent use
✔️ Private use

Citation

@misc{Subramanian2020,
  author = {Subramanian, A.K},
  title = {PyTorch-VAE},
  year = {2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/AntixK/PyTorch-VAE}}
}