Rust bindings for TensorFlow Lite
This crates provides TensorFlow Lite APIs.
Please read the API documentation on docs.rs
Using the interpreter from a model file
The following example shows how to use the TensorFlow Lite interpreter when provided a TensorFlow Lite FlatBuffer file. The example also demonstrates how to run inference on input data.
use std::fs::{self, File};
use std::io::Read;
use tflite::ops::builtin::BuiltinOpResolver;
use tflite::{FlatBufferModel, InterpreterBuilder, Result};
fn test_mnist(model: &FlatBufferModel) -> Result<()> {
let resolver = BuiltinOpResolver::default();
let builder = InterpreterBuilder::new(model, &resolver)?;
let mut interpreter = builder.build()?;
interpreter.allocate_tensors()?;
let inputs = interpreter.inputs().to_vec();
assert_eq!(inputs.len(), 1);
let input_index = inputs[0];
let outputs = interpreter.outputs().to_vec();
assert_eq!(outputs.len(), 1);
let output_index = outputs[0];
let input_tensor = interpreter.tensor_info(input_index).unwrap();
assert_eq!(input_tensor.dims, vec![1, 28, 28, 1]);
let output_tensor = interpreter.tensor_info(output_index).unwrap();
assert_eq!(output_tensor.dims, vec![1, 10]);
let mut input_file = File::open("data/mnist10.bin")?;
for i in 0..10 {
input_file.read_exact(interpreter.tensor_data_mut(input_index)?)?;
interpreter.invoke()?;
let output: &[u8] = interpreter.tensor_data(output_index)?;
let guess = output.iter().enumerate().max_by(|x, y| x.1.cmp(y.1)).unwrap().0;
println!("{}: {:?}", i, output);
assert_eq!(i, guess);
}
Ok(())
}
#[test]
fn mobilenetv1_mnist() -> Result<()> {
test_mnist(&FlatBufferModel::build_from_file("data/MNISTnet_uint8_quant.tflite")?)?;
let buf = fs::read("data/MNISTnet_uint8_quant.tflite")?;
test_mnist(&FlatBufferModel::build_from_buffer(buf)?)
}
#[test]
fn mobilenetv2_mnist() -> Result<()> {
test_mnist(&FlatBufferModel::build_from_file("data/MNISTnet_v2_uint8_quant.tflite")?)?;
let buf = fs::read("data/MNISTnet_v2_uint8_quant.tflite")?;
test_mnist(&FlatBufferModel::build_from_buffer(buf)?)
}
Using the FlatBuffers model APIs
This crate also provides a limited set of FlatBuffers model APIs.
use tflite::model::stl::vector::{VectorInsert, VectorErase, VectorSlice};
use tflite::model::{BuiltinOperator, BuiltinOptions, Model, SoftmaxOptionsT};
#[test]
fn flatbuffer_model_apis_inspect() {
let model = Model::from_file("data/MNISTnet_uint8_quant.tflite").unwrap();
assert_eq!(model.version, 3);
assert_eq!(model.operator_codes.size(), 5);
assert_eq!(model.subgraphs.size(), 1);
assert_eq!(model.buffers.size(), 24);
assert_eq!(
model.description.c_str().to_string_lossy(),
"TOCO Converted."
);
assert_eq!(
model.operator_codes[0].builtin_code,
BuiltinOperator::BuiltinOperator_AVERAGE_POOL_2D
);
assert_eq!(
model
.operator_codes
.iter()
.map(|oc| oc.builtin_code)
.collect::<Vec<_>>(),
vec![
BuiltinOperator::BuiltinOperator_AVERAGE_POOL_2D,
BuiltinOperator::BuiltinOperator_CONV_2D,
BuiltinOperator::BuiltinOperator_DEPTHWISE_CONV_2D,
BuiltinOperator::BuiltinOperator_SOFTMAX,
BuiltinOperator::BuiltinOperator_RESHAPE
]
);
let subgraph = &model.subgraphs[0];
assert_eq!(subgraph.tensors.size(), 23);
assert_eq!(subgraph.operators.size(), 9);
assert_eq!(subgraph.inputs.as_slice(), &[22]);
assert_eq!(subgraph.outputs.as_slice(), &[21]);
let softmax = subgraph
.operators
.iter()
.position(|op| {
model.operator_codes[op.opcode_index as usize].builtin_code
== BuiltinOperator::BuiltinOperator_SOFTMAX
})
.unwrap();
assert_eq!(subgraph.operators[softmax].inputs.as_slice(), &[4]);
assert_eq!(subgraph.operators[softmax].outputs.as_slice(), &[21]);
assert_eq!(
subgraph.operators[softmax].builtin_options.type_,
BuiltinOptions::BuiltinOptions_SoftmaxOptions
);
let softmax_options: &SoftmaxOptionsT = subgraph.operators[softmax].builtin_options.as_ref();
assert_eq!(softmax_options.beta, 1.);
}
#[test]
fn flatbuffer_model_apis_mutate() {
let mut model = Model::from_file("data/MNISTnet_uint8_quant.tflite").unwrap();
model.version = 2;
model.operator_codes.erase(4);
model.buffers.erase(22);
model.buffers.erase(23);
model
.description
.assign(CString::new("flatbuffer").unwrap());
{
let subgraph = &mut model.subgraphs[0];
subgraph.inputs.erase(0);
subgraph.outputs.assign(vec![1, 2, 3, 4]);
}
let model_buffer = model.to_buffer();
let model = Model::from_buffer(&model_buffer);
assert_eq!(model.version, 2);
assert_eq!(model.operator_codes.size(), 4);
assert_eq!(model.subgraphs.size(), 1);
assert_eq!(model.buffers.size(), 22);
assert_eq!(model.description.c_str().to_string_lossy(), "flatbuffer");
let subgraph = &model.subgraphs[0];
assert_eq!(subgraph.tensors.size(), 23);
assert_eq!(subgraph.operators.size(), 9);
assert!(subgraph.inputs.as_slice().is_empty());
assert_eq!(subgraph.outputs.as_slice(), &[1, 2, 3, 4]);
}