conv2
is a fork of conv
,
written by Daniel Keep. It's in the progress of being updated to modern
idiomatic Rust.
This crate provides a number of conversion traits with more specific
semantics than those provided by as
or From
/Into
.
The goal with the traits provided here is to be more specific about what
generic code can rely on, as well as provide reasonably self-describing
alternatives to the standard From
/Into
traits. For example, the
although T: From<U>
might be satisfied, it imposes no restrictions on
the kind of conversion being implemented. As such, the traits in this
crate try to be very specific about what conversions are allowed. This
makes them less generally applicable, but more useful where they do
apply.
In addition, From
/Into
requires all conversions to succeed or panic.
All conversion traits in this crate define an associated error type,
allowing code to react to failed conversions as appropriate.
conv2
is compatible with Rust 1.61 and higher.
The following traits are used to define various conversion semantics:
- [
ApproxFrom
] - approximate conversions, with selectable approximation scheme (see [ApproxScheme
]). - [
ValueFrom
] - exact, value-preserving conversions.
When defining a conversion, try to implement the *From
trait variant
where possible. When using a conversion, try to depend on the *Into
trait variant where possible. This is because the *Into
traits
automatically use *From
implementations, but not the reverse.
Implementing *From
and using *Into
ensures conversions work in as many
contexts as possible.
These extension methods are provided to help with some common cases:
- [
ConvUtil::approx_as
] - approximates toDst
with theDefaultApprox
scheme. - [
ConvUtil::approx_as_by
] - approximates toDst
with the schemeS
. - [
ConvUtil::into_as<Dst>
] - converts toDst
usingInto::into
. - [
ConvUtil::try_as<Dst>
] - converts toDst
usingTryInto::try_into
. - [
ConvUtil::value_as<Dst>
] - converts toDst
usingValueInto::value_into
. - [
ConvAsUtil::approx
] - approximates to an inferred destination type with theDefaultApprox
scheme. - [
ConvAsUtil::approx_by
] - approximates to an inferred destination type with the schemeS
. - [
Saturate::saturate
]- saturates on overflow. - [
UnwrapOk::unwrap_ok
] - unwraps results from conversions that cannot fail. - [
UnwrapOrInf::unwrap_or_inf
] - saturates to ±∞ on failure. - [
UnwrapOrInvalid::unwrap_or_invalid
] - substitutes the target type's "invalid" sentinel value on failure. - [
UnwrapOrSaturate::unwrap_or_saturate
] - saturates to the maximum or minimum value of the target type on failure.
The crate provides several blanket implementations:
*From<A> for A
(all types can be converted from and into themselves).*Into<Dst> for Src where Dst: *From<Src>
(*From
implementations imply a matching*Into
implementation).
Conversions for the builtin numeric (integer and floating point) types are
provided. In general, ValueFrom
conversions exist for all pairs except
for float → integer (since such a conversion is generally unlikely to
exactly succeed) and f64 → f32
(for the same reason). ApproxFrom
conversions with the DefaultApprox
scheme exist between all pairs.
ApproxFrom
with the Wrapping
scheme exist between integers.
A number of error types are defined in the [errors
] module. Generally,
conversions use whichever error type most narrowly defines the kinds of
failures that can occur. For example:
ValueFrom<u8> for u16
cannot possibly fail, and as such it usesNoError
.ValueFrom<i8> for u16
can only fail with a negative overflow, thus it uses theNegOverflow
type.ValueFrom<i32> for u16
can overflow in either direction, hence it usesRangeError
.- Finally,
ApproxFrom<f32> for u16
can overflow (positive or negative), or attempt to convert NaN;FloatError
covers those three cases.
Because there are numerous error types, the GeneralError
enum is
provided. From<E, T> for GeneralError<T>
exists for each error type
E<T>
defined by this crate (even for NoError
!), allowing errors to be
translated automatically by the ?
operator. In fact, all errors can be
"expanded" to all more general forms (e.g. NoError
→ NegOverflow
,
PosOverflow
→ RangeError
→ FloatError
).
Aside from NoError
, the various error types wrap the input value that you
attempted to convert. This is so that non-Copy
types do not need to be
pre-emptively cloned prior to conversion, just in case the conversion
fails. A downside is that this means there are many, many incompatible
error types.
To help alleviate this, there is also GeneralErrorKind
, which is simply
GeneralError<T>
without the payload, and all errors can be converted
into it directly.
The reason for not just using GeneralErrorKind
in the first place is to
statically reduce the number of potential error cases you need to deal
with. It also allows the Unwrap*
extension traits to be defined without
the possibility for runtime failure (e.g. you cannot use
unwrap_or_saturate
with a FloatError
, because what do you do if the
error is NotANumber
; saturate to max or to min? Or panic?).
// This *cannot* fail, so we can use `unwrap_ok` to discard the `Result`.
assert_eq!(u8::value_from(0u8).unwrap_ok(), 0u8);
// This *can* fail. Specifically, it can overflow toward negative infinity.
assert_eq!(u8::value_from(0i8), Ok(0u8));
assert_eq!(u8::value_from(-1i8), Err(NegOverflow(-1)));
// This can overflow in *either* direction; hence the change to `RangeError`.
assert_eq!(u8::value_from(-1i16), Err(RangeError::NegOverflow(-1)));
assert_eq!(u8::value_from(0i16), Ok(0u8));
assert_eq!(u8::value_from(256i16), Err(RangeError::PosOverflow(256)));
// We can use the extension traits to simplify this a little.
assert_eq!(u8::value_from(-1i16).unwrap_or_saturate(), 0u8);
assert_eq!(u8::value_from(0i16).unwrap_or_saturate(), 0u8);
assert_eq!(u8::value_from(256i16).unwrap_or_saturate(), 255u8);
// Obviously, all integers can be "approximated" using the default scheme (it
// doesn't *do* anything), but they can *also* be approximated with the
// `Wrapping` scheme.
assert_eq!(
<u8 as ApproxFrom<_, DefaultApprox>>::approx_from(400u16),
Err(PosOverflow(400)));
assert_eq!(
<u8 as ApproxFrom<_, Wrapping>>::approx_from(400u16),
Ok(144u8));
// This is rather inconvenient; as such, there are a number of convenience
// extension methods available via `ConvUtil` and `ConvAsUtil`.
assert_eq!(400u16.approx(), Err::<u8, _>(PosOverflow(400)));
assert_eq!(400u16.approx_by::<Wrapping>(), Ok::<u8, _>(144u8));
assert_eq!(400u16.approx_as::<u8>(), Err(PosOverflow(400)));
assert_eq!(400u16.approx_as_by::<u8, Wrapping>(), Ok(144));
// Integer -> float conversions *can* fail due to limited precision.
// Once the continuous range of exactly representable integers is exceeded, the
// provided implementations fail with overflow errors.
assert_eq!(f32::value_from(16_777_216i32), Ok(16_777_216.0f32));
assert_eq!(f32::value_from(16_777_217i32), Err(RangeError::PosOverflow(16_777_217)));
// Float -> integer conversions have to be done using approximations. Although
// exact conversions are *possible*, "advertising" this with an implementation
// is misleading.
//
// Note that `DefaultApprox` for float -> integer uses whatever rounding
// mode is currently active (*i.e.* whatever `as` would do).
assert_eq!(41.0f32.approx(), Ok(41u8));
assert_eq!(41.3f32.approx(), Ok(41u8));
assert_eq!(41.5f32.approx(), Ok(41u8));
assert_eq!(41.8f32.approx(), Ok(41u8));
assert_eq!(42.0f32.approx(), Ok(42u8));
assert_eq!(255.0f32.approx(), Ok(255u8));
assert_eq!(256.0f32.approx(), Err::<u8, _>(FloatError::PosOverflow(256.0)));
// Sometimes, it can be useful to saturate the conversion from float to
// integer directly, then account for NaN as input separately. The `Saturate`
// extension trait exists for this reason.
assert_eq!((-23.0f32).approx_as::<u8>().saturate(), Ok(0));
assert_eq!(302.0f32.approx_as::<u8>().saturate(), Ok(255u8));
assert!(std::f32::NAN.approx_as::<u8>().saturate().is_err());
// If you really don't care about the specific kind of error, you can just rely
// on automatic conversion to `GeneralErrorKind`.
fn too_many_errors() -> Result<(), GeneralErrorKind> {
let x: u8 = 0u8.value_into()?;
assert_eq!(x, 0);
let y: i8 = 0u8.value_into()?;
assert_eq!(y, 0);
let z: i16 = 0u8.value_into()?;
assert_eq!(z, 0);
let x: u8 = 0.0f32.approx()?;
assert_eq!(x, 0u8);
Ok(())
}
too_many_errors().unwrap();