This is a CZ4032 Project 1 implementing Recommender System onto datasets for data analysis.
Tan Jiawei, Eric
Zon Liew Hur Zhen
Chan Jun Jie
Seph Chen Kian Leong
Samuel Png Yao Wei
- Working Editor / Anaconda with Python installed
- pip install packages inside requirements.txt (Surprise, wordcloud, pandas, scipy, numpy, re, time, nltk)
Collaborative Filtering
Comment-Based Filtering
- KNN Collaborative - Optimization will take approximately an hour hence comment it out as it is not required.
get_rec_knn([("movie_title", rating) - Search Similarity - new_user1 = [("movie_title", rating), ("move_title", rating)] -> adjust the user's watch list and rating to retrieve recommendations.
- Similar Genre Average Ratings - get_recommendation_netflix(["genre" , "genre"],[]) -> adjust the user's favourite genre for recommendations
- Netflix Dataset Recommendation - recommend_netflix(['Movie_Title']) -> Returns you the top 5 netflix recommendation
- IMDB Movie Dataset Recommendation - movie_recommendation(['Movie_Title']) -> Returns you the top 5 movie recommendation
For Content Based Filtering:
IMDB Movies Top 1000 : https://www.kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows
Netflix: https://www.kaggle.com/datasets/shivamb/netflix-shows
For Collaborative Based Filter:
netflix_titles.csv
userDatas.csv (own data in github)
movies.csv
ratings.csv : https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqa21xZjQyNGE0Qkx0NkFVOUZYM3h6OE4zampBZ3xBQ3Jtc0tsRGM5RHFtWFdXUFdIRTYyQnd0cUJxeldVQWtlaXBYMVQ1cFBRSWhLRk9JUjdsWnBadHJNdWl3QXV3Zkx3QUJwZ1k5ZmFsdTZpODJ5UXEwUjlrdkJFcU5HMmxhQ1ZXY0p6ZHFRQjRlRDJiM2Y1OGE1SQ&q=https%3A%2F%2Fdrive.google.com%2Ffile%2Fd%2F1WWQCl9w52M1sXNWd4JSKL7q-HHywk03p%2Fview%3Fusp%3Dsharing&v=3ecNC-So0r4