- Load libraries
- Query data
- General tweet prevalence over time
- Most prolific tweeters?
- Relationship between follower count and tweet popularity
- Chatterplot of tweet words
- Session information
library(tidyverse)
library(tidytext)
library(ggrepel)
if (!requireNamespace("rtweet", quietly = TRUE)) install.packages("rtweet")
library(rtweet)
Below is the code to query the Twitter data for the #NLMITC19
. I ran
this at 2019-06-28 22:50.
rt <- search_tweets("#NLMITC19 OR #NLMIT19", n = 1800, include_rts = FALSE)
saveRDS(rt, "nlmitc19_search.rds")
saveRDS(rt$status_id, "nlmitc19_search-ids.rds")
But instead, here I’ll just look up the status IDs.
ids_file <- "nlmitc19_search-ids.rds"
nlmitc19_file <- "nlmitc19_search.rds"
# Read in search directly if exists
if (file.exists(nlmitc19_file)) {
rt <- readRDS(nlmitc19_file)
} else {
# Download status IDs file
download.file(
"https://github.com/erictleung/NLMITC19/blob/master/data/nlmitc19_search-ids.rds?raw=true",
ids_file
)
# Read status IDs from downloaded file
ids <- readRDS(ids_file)
# Lookup data associated with status ids
rt <- rtweet::lookup_tweets(ids)
}
Code modified from
rstudioconf_tweets
.
rt %>%
ts_plot("30 minutes", color = "transparent") +
geom_smooth(method = "loess",
se = FALSE,
span = 0.05,
size = 2,
color = "#0066aa") +
geom_point(size = 5,
shape = 21,
fill = "#ADFF2F99",
color = "#000000dd") +
# ggplot2 theme
theme_minimal(base_size = 15) +
theme(axis.text = element_text(colour = "#222222"),
plot.title = element_text(size = rel(1.7), face = "bold"),
plot.subtitle = element_text(size = rel(1.3)),
plot.caption = element_text(colour = "#444444")) +
# Caption information
labs(title = "Frequency of tweets about #NLMITC19 over time",
subtitle = "Twitter status counts aggregated using half-hour intervals",
caption = "\n\nSource: Data gathered via Twitter's standard `search/tweets` API using rtweet",
x = NULL, y = NULL)
Makes sense considering there were two days of conference time.
rt %>%
group_by(screen_name) %>%
summarise(tweets = n()) %>%
ggplot(aes(x = tweets, y = reorder(screen_name, tweets))) +
geom_point() +
# Theme styling information
theme_minimal(base_size = 15) +
theme(axis.text = element_text(colour = "#222222"),
plot.title = element_text(size = rel(1.7), face = "bold"),
plot.subtitle = element_text(size = rel(1.3)),
plot.caption = element_text(colour = "#444444")) +
# Labels
labs(title = "Top tweeters using\n#NLMITC19 or #NLMIT19",
x = "Total number of tweets",
y = "Twitter username",
caption = "\n\nSource: Data gathered via Twitter's standard `search/tweets` API using rtweet")
Do more followers have more popular tweets?
I take the average number of favorite of an individual’s tweets and normalize it based on the total number of tweets.
rt %>%
# Preprocess and count average favorites normalized by number of tweets
group_by(screen_name) %>%
mutate(avg_fav = mean(favorite_count)) %>%
mutate(avg_norm_fav = avg_fav / n()) %>%
ungroup() %>%
select(screen_name, avg_fav, avg_norm_fav, followers_count) %>%
distinct() %>%
# Offset to not create infinite values when log transforming
mutate(followers_count = followers_count + 0.001) %>%
mutate(avg_norm_fav = avg_norm_fav + 0.001) %>%
# Plot results
ggplot(aes(x = followers_count, y = avg_norm_fav, label = screen_name)) +
geom_text_repel() +
geom_point() +
# Use log-scale for x-axis and y-axis
labs(title = "Average normalized number of favorites\nversus user follower count",
x = "Number of followers",
y = "Average normalized number of favorites",
caption = "\nSource: Data gathered via Twitter's standard `search/tweets` API using rtweet") +
# Theme styling information
theme_minimal(base_size = 15) +
theme(axis.text = element_text(colour = "#222222"),
plot.title = element_text(size = rel(1.7), face = "bold"),
plot.subtitle = element_text(size = rel(1.3)),
plot.caption = element_text(colour = "#444444"))
rt_no_stop <- rt %>%
# Just look at tweet text
select(text, favorite_count) %>%
# Remove web links
mutate(text = str_replace_all(text, "https?[:graph:]+", "'")) %>%
# Remove mentions
# Rule are that names are alphanumeric and can have underscores.
# Names can also be preceeded with "." or end with some punctuation
# Twitter:
# help.twitter.com/en/managing-your-account/twitter-username-rules
# To avoid emails:
# stackoverflow.com/questions/4424179/how-to-validate-a-twitter-username-using-regex#comment21201837_4424288
mutate(text = str_replace_all(text,
"\\.?@([:alnum:]|_){1,15}(?![.A-Za-z])[:graph:]?",
"")) %>%
# Tokenize text to just single words
unnest_tokens(word, text) %>%
# Remove stop words (e.g., "a", "the", "and", etc)
anti_join(get_stopwords())
## Joining, by = "word"
# Get average number of favorites
rt_word_avg_fav <- rt_no_stop %>%
# Average favorite count
group_by(word) %>%
summarize(avg_fav = mean(favorite_count))
# Count number of mentions
rt_counts <- rt_no_stop %>%
# Create word counts
count(word, sort = TRUE)
# Filter low counts and join counts and average favorite score
chatter_rt <- rt_counts %>%
filter(n > 1) %>%
filter(word != "nlmitc19") %>%
left_join(rt_word_avg_fav, by = "word")
Code below modified from “RIP wordclouds, long live CHATTERPLOTS”.
chatter_rt %>%
# Add small offset average favorite counts because some are zero and we log
# transform, which can introduce infinite values
mutate(avg_fav = avg_fav + 0.001) %>%
# Gather just top 100 mentions
top_n(100, wt = n) %>%
ggplot(aes(x = avg_fav, y = n, label = word)) +
geom_text_repel(segment.alpha = 0,
aes(colour = avg_fav, size = n)) +
# Set color gradient,log transform & customize legend
scale_color_gradient(low = "green3", high = "violetred",
trans = "log10",
guide = guide_colourbar(direction = "horizontal",
title.position = "top")) +
# Set word size range & turn off legend
scale_size_continuous(range = c(3, 10),
guide = FALSE) +
# Use log-scale for x-axis
scale_x_log10() +
ggtitle(paste0("Top 100 words from ",
nrow(rt),
" #NLMITC19 tweets, by frequency"),
subtitle = "Word frequency (size) ~ Avg number of favorites (color)") +
labs(y = "Word frequency across all tweets",
x = "Avg number of favorites in tweets containing word (log scale)",
colour = "Avg num of favs (log)") +
# minimal theme & customizations
theme_minimal() +
theme(legend.position = c(0.20, 0.99),
legend.justification = c("right","top"),
panel.grid.major = element_line(colour = "whitesmoke"))
sessionInfo()
## R version 3.5.0 (2018-04-23)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 7 x64 (build 7601) Service Pack 1
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] rtweet_0.6.8 ggrepel_0.8.0 tidytext_0.2.0 forcats_0.4.0
## [5] stringr_1.4.0 dplyr_0.8.0.1 purrr_0.3.2 readr_1.3.1
## [9] tidyr_0.8.3 tibble_2.1.1 ggplot2_3.1.0 tidyverse_1.2.1
##
## loaded via a namespace (and not attached):
## [1] tidyselect_0.2.5 xfun_0.5 haven_2.1.0
## [4] lattice_0.20-38 colorspace_1.4-1 generics_0.0.2
## [7] htmltools_0.3.6 SnowballC_0.6.0 yaml_2.2.0
## [10] rlang_0.3.2 pillar_1.3.1 glue_1.3.1
## [13] withr_2.1.2 modelr_0.1.4 readxl_1.3.1
## [16] plyr_1.8.4 munsell_0.5.0 gtable_0.3.0
## [19] cellranger_1.1.0 rvest_0.3.2 evaluate_0.13
## [22] labeling_0.3 knitr_1.22 broom_0.5.1
## [25] tokenizers_0.2.1 Rcpp_1.0.1 scales_1.0.0
## [28] backports_1.1.3 jsonlite_1.6 stopwords_0.9.0
## [31] hms_0.4.2 digest_0.6.18 stringi_1.4.3
## [34] grid_3.5.0 cli_1.1.0 tools_3.5.0
## [37] magrittr_1.5 lazyeval_0.2.2 janeaustenr_0.1.5
## [40] crayon_1.3.4 pkgconfig_2.0.2 Matrix_1.2-16
## [43] xml2_1.2.0 lubridate_1.7.4 assertthat_0.2.1
## [46] rmarkdown_1.12 httr_1.4.0 rstudioapi_0.10
## [49] R6_2.4.0 nlme_3.1-137 compiler_3.5.0