Notice: The architecture of this library is still evolving, so expect (many) backwards-incompatible changes
WebPPL visualization library. Demo: probmods.github.io/webppl-viz/.
Dependencies:
- webppl (0.9.2-b0139d4 or later)
- (optional) webppl-editor (eeb3208 or later)
- Cairo (see instructions for your operating system)
Installation:
cd ~ # or however you get to the home directory
mkdir .webppl # make a folder called .webppl (if it doesn't already exist)
npm install probmods/webppl-viz # install this node package
Usage:
- Command-line: require as a WebPPL package. Example:
webppl foo.wppl --require webppl-viz
- Browser: build (run
grunt bundle
) and then include webppl-viz.js and webppl-viz.css on your web page. (You can also bundle this with core webppl when building that for the browser.)
Methods for plotting raw data.
viz.bar(df, [options])
viz.bar(xs, ys, [options])
Options:
horizontal
(default: false). (TODO) draw a horizontal plot rather than vertical one.xLabel
(default: x). x axis label.yLabel
(default: y). y axis label.xType
(default: nominal). type of x axis (nominal or quantitative).groupBy
(default: none). Grouping variable for different bars.
viz.line(df, [options])
viz.line(xs, ys, [options])
Options:
xLabel
(default: x). x axis label.yLabel
(default: y). y axis label.groupBy
(default: none). Grouping variable for different lines.xBounds
(default: min and max of the supplied data). An array of [min,max] bounds for the x-axis.yBounds
(default: min and max of the supplied data). An array of [min,max] bounds for the y-axis.strokeWidth
(default: 2). The line stroke width, in pixels.
viz.scatter(xs, ys, [options])
viz.scatter(df, [options])
Options:
xLabel
(default: x). x axis label.yLabel
(default: y). y axis label.
Basic methods for visualizing samples and marginal distributions. These plot data that are up to 2-dimensional.
viz.table(dist, [options])
viz.table(samples, [options])
Options:
destructure
(default = true). Expand support keys as columns of the table.log
(default = false). If true, shows log probabilities.top
(default = false). If a numbern
, only shows topn
results.fileName
(default = None). If provided, prints the table into that file in HTML format.
viz.hist(samples, [options])
viz.hist(dist, [options])
Options:
numBins
(defaults to 30). For real-valued data, how many bins to aggregate data into.
viz.density(samples, [options])
viz.density(dist, [options])
Options:
bounds
(default: min and max of the supplied samples). An array of bounds for density estimation
viz.heatMap(samples, [options])
viz.heatMap(dist, [options])
Options:
bandwidthX
(TODO)bandwidthY
(TODO)boundsX
(TODO)boundsY
(TODO)
TODO: document this
More complex methods for visualizing smaples and distributions. These can plot data that are higher dimensional.
viz.marginals(dist)
shows each component of a joint distribution dist
-- density plots for real components and histograms for categorical components.
viz.auto
tries to automatically construct a useful visualization based on the types of the different components in the posterior.
Options:
summarize
(default = false). (TODO) For data with real-valued components, you can either try to show all the data (scatter plot) or summarize by showing a density estimate (heat map). This option has no effect if data is entirely categorical.
How it works
viz.auto
uses the types of the components to constrain visualization.
Let's use c
to denote categorical variables and r
for real variables (for now, ordinal variables are treated as categorical). Some examples of types:
Support element | Type | Notes |
---|---|---|
String | c |
|
Integer | r |
|
Real number | r |
|
Object | concatenation of component types | The type of {fruit: 'apple', price: 3.6} is rc |
Array | concatenation of component types | The type of [9.2, 8.1, 'candy bar'] is rrc |
How each type is visualized:
Type | Visualization |
---|---|
c |
histogram |
r |
density plot |
cc |
bar plot (but if both dimensions have size >5, then heat map) |
cr |
density curve, colors for different categorical groups |
rr |
scatter plot (TODO |
ccc |
trellis frequency table |
ccr |
trellis density plot, colors for different categorical groups |
crr |
trellis scatter plot (TODO |
rrr+ |
parallel coordinates plot |
cccc |
trellis frequency table (TODO) |
cccr |
trellis scatter plot (TODO |
ccrr |
trellis scatter plot / heat map (TODO) |
crrr |
trellis parallel coordinates plot (TODO) |
ccrrr |
trellis parallel coordinates plot (TODO) |
grunt setup-demo # make webppl and webppl-editor dependencies for demo
grunt bundle # compile js + minify, make css
grunt browserify # compiling js
grunt uglify # minify js
grunt browserify-watch # watchified compile js
grunt css # make css