Code for our 2019 CogSci paper "Learning deep taxonomic priors for concept learning from few positive examples." To cite the work that this code is associated with, use:
@inproceedings{grant2019learning,
title={Learning deep taxonomic priors for concept learning from few positive examples},
author={Grant, Erin and Peterson, Joshua C and Griffiths, Thomas L},
booktitle={Proceedings of the Annual Conference of the Cognitive Science Society},
year={2019}
}
-
Install the package. (Remember to
conda activate cogsci-2019-concept-learning
if necessary.) -
Run the following commands to set up NLTK:
python -c "import nltk; nltk.download('wordnet'); nltk.download('omw-1.4')"
-
TODO(eringrant): Document how to get ImageNet images by synset.
-
A training and evaluation run on the human data can then be run via:
scripts/run_human_comp.sh /tmp /tmp PATH_TO_IMAGENET
To install via Conda, do:
git clone git@github.com:eringrant/cogsci-2019-concept-learning.git
cd cogsci-2019-concept-learning
conda env create --file environment.yml
The Conda environment can then be activated via conda activate cogsci-2019-concept-learning
.
To install via pip, do:
git clone git@github.com:eringrant/cogsci-2019-concept-learning.git
cd cogsci-2019-concept-learning
pip install -e .