Implementations of a random selection of artificial neural net based models and methods.
Development is done using pyenv
, pinning the python version to the one in the file .python-version
.
Package + notebooks:
git clone https://github.com/eschmidt42/random-neural-net-models.git
cd random-neural-net-models
make install
Package only:
pip install random-neural-net-models
See jupyter notebooks in nbs/
for:
- fastai style learner with tensordict:
learner-example.ipynb
- perceptron:
perceptron.ipynb
- backpropagation:
backpropagation_rumelhart1986.ipynb
- convolution:
convolution_lecun1990.ipynb
- cnn autoencoder:
- mnist:
cnn_autoencoder_fastai2022.ipynb
- fashion mnist:
cnn_autoencoder_fastai2022_fashion.ipynb
- mnist:
- variational autoencoder:
- dense:
dense_variational_autoencoder_fastai2022.ipynb
- cnn+dense:
cnn_variational_autoencoder_fastai2022.ipynb
- dense:
- optimizers:
stochastic_optimization_methods.ipynb
- resnet:
resnet_fastai2022.ipynb
- unet:
unet_fastai2022.ipynb
unet-isbi2012
- diffusion (unet + noise):
diffusion_fastai2022.ipynb
diffusion_fastai2022_learner.ipynb
diffusion_fastai2022_learner_with_attention.ipynb
- mingpt:
mingpt_sort.ipynb
mingpt_char.ipynb
mingpt_adder.ipynb
- transformer:
language-model.ipynb
- tokenization:
tokenization.ipynb
- tabular:
tabular-fastai-classification.ipynb
tabular-fastai-classification-with-missingness.ipynb
tabular-fastai-classification-with-missingness-and-categories.ipynb
tabular-fastai-regression.ipynb
tabular-fastai-regression-with-missingness.ipynb
tabular-fastai-regression-with-missingness-and-categories.ipynb
tabular-variational-auto-encoder.ipynb
reusing-vae-for-classification.ipynb