/random-neural-net-models

Implementations of a random selection of artificial neural net based models and methods.

Primary LanguageJupyter NotebookBSD 3-Clause "New" or "Revised" LicenseBSD-3-Clause

random neural nets

Implementations of a random selection of artificial neural net based models and methods.

Python version

Development is done using pyenv, pinning the python version to the one in the file .python-version.

Installation (on Linux)

Package + notebooks:

git clone https://github.com/eschmidt42/random-neural-net-models.git
cd random-neural-net-models
make install

Package only:

pip install random-neural-net-models

Usage

See jupyter notebooks in nbs/ for:

  • fastai style learner with tensordict: learner-example.ipynb
  • perceptron: perceptron.ipynb
  • backpropagation: backpropagation_rumelhart1986.ipynb
  • convolution: convolution_lecun1990.ipynb
  • cnn autoencoder:
    • mnist: cnn_autoencoder_fastai2022.ipynb
    • fashion mnist: cnn_autoencoder_fastai2022_fashion.ipynb
  • variational autoencoder:
    • dense: dense_variational_autoencoder_fastai2022.ipynb
    • cnn+dense: cnn_variational_autoencoder_fastai2022.ipynb
  • optimizers: stochastic_optimization_methods.ipynb
  • resnet: resnet_fastai2022.ipynb
  • unet:
    • unet_fastai2022.ipynb
    • unet-isbi2012
  • diffusion (unet + noise):
    • diffusion_fastai2022.ipynb
    • diffusion_fastai2022_learner.ipynb
    • diffusion_fastai2022_learner_with_attention.ipynb
  • mingpt:
    • mingpt_sort.ipynb
    • mingpt_char.ipynb
    • mingpt_adder.ipynb
  • transformer: language-model.ipynb
  • tokenization: tokenization.ipynb
  • tabular:
    • tabular-fastai-classification.ipynb
    • tabular-fastai-classification-with-missingness.ipynb
    • tabular-fastai-classification-with-missingness-and-categories.ipynb
    • tabular-fastai-regression.ipynb
    • tabular-fastai-regression-with-missingness.ipynb
    • tabular-fastai-regression-with-missingness-and-categories.ipynb
    • tabular-variational-auto-encoder.ipynb
    • reusing-vae-for-classification.ipynb