/LaMI-DETR

[ECCV 2024] Official implementation of "LaMI-DETR: Open-Vocabulary Detection with Language Model Instruction"

Primary LanguagePythonApache License 2.0Apache-2.0

LaMI-DETR

This repository is the official implementation of the ECCV 2024 paper LaMI-DETR: Open-Vocabulary Detection with Language Model Instruction.

arXiv

PWC

Installation

The code is tested under python=3.9 torch=1.10.0 cuda=11.7. Please download and unzip this environment under your conda envs dir.

cd your_conda_envs_path
unzip tar -xvf lami.tar
vim your_conda_envs_path/lami/bin/pip
change '#!~/.conda/envs/lami/bin/python' to '#!your_conda_envs_path/lami/bin/python'
export CUDA_HOME=/usr/local/cuda-11.7

or you can create a conda environment and activate it. Install PyTorch following the official documentation. For example,

conda create -n lami python=3.9
conda activate lami
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
export CUDA_HOME=/usr/local/cuda-11.7

Check the torch installation.

python
>>> import torch
>>> torch.cuda.is_available()
True
>>> from torch.utils.cpp_extension import CUDA_HOME
>>> CUDA_HOME
'/usr/local/cuda-11.7'
>>> exit()

Install the detectron2 and detrex.

cd LaMI-DETR
pip install -e detectron2
pip install -e .

Preparation

Datasets

Download the MS-COCO dataset to dataset/coco.

Download and unzip the LVIS annotation to dataset/lvis.

Download and unzip the VG annotation to dataset/VisualGenome.

LaMI-DETR/dataset   
├── coco/ 
│   ├── train2017/
│   └── val2017/
├── lvis
|   ├── lvis_v1_train_norare.json
|   ├── lvis_v1_val.json
|   ├── lvis_v1_minival.json
|   ├── lvis_v1_train_norare_cat_info.json
|   ├── lvis_v1_seen_classes.json
|   └── lvis_v1_all_classes.json
├── VisualGenome
|   ├── lvis_v1_all_classes.json
|   ├── lvis_v1_seen_classes.json
|   ├── vg_filter_rare_cat_info.json
|   ├── vg_filter_rare.json
|   └── images/
├── cluster
|   ├── lvis_cluster_128.npy
|   └── vg_cluster_256.npy
└── metadata 
    ├── lvis_visual_desc_convnextl.npy
    ├── lvis_visual_desc_confuse_lvis_convnextl.npy
    └── concept_dict_visual_desc_convnextl.npy

Custom Dataset Register

Referring to Detectron2

detectron2/detectron2/data/datasets/builtin.py  
detectron2/detectron2/data/datasets/builtin_meta.py  

Custom Concept Prediction

Change "model.eval_query_path" in config file

Pretrained Models

LaMI-DETR/pretrained_models   
├── idow_convnext_large_12ep_lvis/ 
│   └── model_final.pth
├── idow_convnext_large_12ep_vg/
│   └── model_final.pth
├── lami_convnext_large_obj365_12ep.pth
├── clip_convnext_large_trans.pth
└── clip_convnext_large_head.pth

clip_convnext_large_head.pth

Inference

In the paper, we reported p2 layer score ensemble results. This repository provides p3 layer results, which are generally higher. We found p2 and p3 layers with ConvNeXt yield similar results, but p3 is much faster. Thus, we recommend using p3.

# Training Data Inference Data AP APr Script Init checkpoint Checkpoint
1 LVIS-base LVIS 41.6 43.3 script clip_convnext_large_trans.pth idow_convnext_large_12ep_lvis/model_final.pth
2 VGdedup LVIS 35.4 38.8 script lami_convnext_large_obj365_12ep.pth idow_convnext_large_12ep_vg/model_final.pth

OV-LVIS

CUDA_VISIBLE_DEVICES=0,1,2,3 python tools/train_net.py --config-file lami_dino/configs/dino_convnext_large_4scale_12ep_lvis.py --num-gpus 4 --eval-only train.init_checkpoint=pretrained_models/idow_convnext_large_12ep_lvis/model_final.pth

Zero-shot LVIS

CUDA_VISIBLE_DEVICES=0,1,2,3 python tools/train_net.py --config-file lami_dino/configs/dino_convnext_large_4scale_12ep_vg.py --num-gpus 4 --eval-only train.init_checkpoint=pretrained_models/idow_convnext_large_12ep_vg/model_final.pth

For a quick debug you can update numpy to 1.24.0 and install lvis-debug, then comment the 372 line and uncomment the 373 line in detectron2/detectron2/evaluation/lvis_evaluation.py

pip uninstall lvis
git clone https://github.com/eternaldolphin/lvis-debug.git
cd lvis-debug
pip install -e .
cd ../
CUDA_VISIBLE_DEVICES=1 python tools/train_net.py --config-file lami_dino/configs/dino_convnext_large_4scale_12ep_lvis.py --num-gpus 1 --ddebug --eval-only

Training

OV-LVIS

python tools/train_net.py --config-file lami_dino/configs/dino_convnext_large_4scale_12ep_lvis.py --num-gpus 8 train.init_checkpoint=pretrained_models/clip_convnext_large_trans.pth

Zero-shot LVIS

python tools/train_net.py --config-file lami_dino/configs/dino_convnext_large_4scale_12ep_vg.py --num-gpus 8 train.init_checkpoint=pretrained_models/lami_convnext_large_obj365_12ep.pth

For a quick debug you can update numpy to 1.24.0 and install lvis-debug, then comment the 372 line and uncomment the 373 line in detectron2/detectron2/evaluation/lvis_evaluation.py

CUDA_VISIBLE_DEVICES=1 python tools/train_net.py --config-file lami_dino/configs/dino_convnext_large_4scale_12ep_lvis.py --num-gpus 1 --ddebug

TODO List

  • Release inference codes.
  • Release checkpoints.
  • Release training codes.
  • Release demo.
  • Release coco and o365 inference codes.

🤝🏼 Cite Us

@inproceedings{du2024lami,
  title={LaMI-DETR: Open-Vocabulary Detection with Language Model Instruction},
  author={Du, Penghui and Wang, Yu and Sun, Yifan and Wang, Luting and Liao, Yue and Zhang, Gang and Ding, Errui and Wang, Yan and Wang, Jingdong and Liu, Si},
  booktitle={Proceedings of the European conference on computer vision (ECCV)},
  year={2024}
}

💖 Acknowledgement

LaMI-DETR is built based on detectron2 and detrex, thanks to all the contributors!