A weekly data project aimed at the R ecosystem. An emphasis will be placed on understanding how to summarize and arrange data to make meaningful charts with ggplot2
, tidyr
, dplyr
, and other tools in the tidyverse
ecosystem.
Join the R4DS online learning community in the weekly #TidyTuesday event! Every week we post a raw dataset, an original chart associated with that dataset, and ask you to apply your take on the chart. While the data set will be “tamed”, it will not always be tidy! As such you might need to apply various R for Data Science techniques to wrangle the data into a true tidy format. The goal of Tidy Tuesday is to apply your R skills, get feedback, explore other’s work, and connect with the greater RStats community! As such we encourage everyone of all skills to participate!
We will have many sources of data and want to emphasize that no causation is implied. There are various moderating variables that affect all data, many of which might not have been captured in these datasets. As such, our guidelines are to use the data provided to practice your data tidying and plotting techniques. Participants are invited to consider for themselves what nuancing factors might underlie these relationships.
The intent of Tidy Tuesday is to provide a safe and supportive forum for individuals to practice their wrangling and data visualization skills independent of drawing conclusions. While we understand that the two are related, the focus of this practice is purely on building skills with real-world data.
All data will be posted on the data sets page on Monday. It will include the link to the original article (for context) and to the data set.
We welcome all newcomers, enthusiasts, and experts to participate, but be mindful of a few things:
- The data set comes from the source article or the source that the article credits. Be mindful that the data is what it is and Tidy Tuesday is designed to help you practice data visualization and basic data wrangling in R.
- Again, the data is what it is! You are welcome to explore beyond the provided dataset, but the data is provided as a "toy" dataset to practice techniques on.
- This is NOT about criticizing the original article or graph. Real people made the graphs, collected or acquired the data! Focus on the provided dataset, learning, and improving your techniques in R.
- This is NOT about criticizing or tearing down your fellow #RStats practitioners! Be supportive and kind to each other! Like other's posts and help promote the #RStats community!
- Use the hashtag #TidyTuesday on Twitter if you create your own version and would like to share it.
- Include a picture of the visualisation when you post to Twitter.
- Include a copy of the code used to create your visualization when you post to Twitter. Comment your code wherever possible to help yourself and others understand your process!
- Focus on improving your craft, even if you end up with someting simple!
- Give credit to the original data source whenever possible.
Week | Date | Data | Source | Article |
---|---|---|---|---|
1 | 2018-04-02 | US Tuition Costs | onlinembapage.com | onlinembapage.com |
2 | 2018-04-09 | NFL Positional Salaries | Spotrac.com | fivethirtyeight.com |
3 | 2018-04-16 | Global Mortality | ourworldindata.org | ourworldindata.org |
4 | 2018-04-23 | Australian Salaries by Gender | data.gov.au | data.gov.au |
5 | 2018-04-30 | ACS Census Data (2015) | census.gov , Kaggle | No article |
6 | 2018-05-07 | Global Coffee Chains | Starbucks: kaggle.com , Tim Horton: timhortons.com , Dunkin Donuts: odditysoftware.com | flowingdata.com |
7 | 2018-05-14 | Star Wars Survey | fivethirtyeight package | fivethirtyeight.com |
8 | 2018-05-21 | US Honey Production | USDA, Kaggle.com | Bee Culture |
9 | 2018-05-29 | Comic book characters | FiveThirtyEight package | FiveThirtyEight.com |
10 | 2018-06-05 | Biketown Bikeshare tidy RAW DATA | BiketownPDX | Biketown cascadiaRconf/cRaggy |
11 | 2018-06-12 | FIFA World Cup Audience | FiveThirtyEight package | FiveThirtyEight.com |
12 | 2018-06-19 | Hurricanes & Puerto Rico | FiveThirtyEight package | FiveThirtyEight.com |
The R4DS Online Learning Community
The R for Data Science textbook
Carbon lets you post beautiful code directly to Twitter!
We will use the fivethirtyeight package frequently for “tame" data
GitHub lets you host raw code for free!
A guide to getting started with GitHub
How to save high quality ggplot2
images