Netron is a viewer for neural network, deep learning and machine learning models.
Netron supports ONNX (.onnx
, .pb
, .pbtxt
), Keras (.h5
, .keras
), CoreML (.mlmodel
), Caffe2 (predict_net.pb
, predict_net.pbtxt
), MXNet (.model
, -symbol.json
) and TensorFlow Lite (.tflite
). Netron has experimental support for Caffe (.caffemodel
, .prototxt
), PyTorch (.pth
), Torch (.t7
), CNTK (.model
, .cntk
), PaddlePaddle (__model__
), scikit-learn (.pkl
), TensorFlow.js (model.json
, .pb
) and TensorFlow (.pb
, .meta
, .pbtxt
).
macOS: Download the .dmg
file or run brew cask install netron
Linux: Download the .AppImage
or .deb
file.
Windows: Download the .exe
installer.
Browser: Start the browser version.
Python Server: Run pip install netron
and netron -b [MODEL_FILE]
. In Python run import netron
and netron.start('model.onnx')
.
Sample model files you can download and open:
ONNX Models: Inception v1, Inception v2, ResNet-50, SqueezeNet
Keras Models: resnet, tiny-yolo-voc
CoreML Models: MobileNet, Places205-GoogLeNet, Inception v3
TensorFlow Lite Models: Smart Reply 1.0 , Inception v3 2016
Caffe Models: BVLC AlexNet, BVLC CaffeNet, BVLC GoogleNet
Caffe2 Models: BVLC GoogleNet, Inception v2
MXNet Models: CaffeNet, SqueezeNet v1.1
TensorFlow models: Inception v3, Inception v4, Inception 5h