[NeurIPS 2024] MVInpainter: Learning Multi-View Consistent Inpainting to Bridge 2D and 3D Editing
- Environment and dataset setup
- Training codes
- Inference models and pipeline
- Release better models for 512x512 resolution
git clone https://github.com/ewrfcas/MVInpainter.git
cd MVInpainter
conda create -n mvinpainter python=3.8
conda activate mvinpainter
pip install -r requirements.txt
mim install mmcv-full
pip install mmflow
# We need to replace the new decoder py of mmflow for faster flow estimation
cp ./check_points/mmflow/raft_decoder.py /usr/local/conda/envs/mvinpainter/lib/python3.8/site-packages/mmflow/models/decoders/
- Downloading Co3dv2, MVImgNet for MVInpainter-O. Downloading Real10k, DL3DV, Scannet++ for MVInpainter-F.
- Downloading information of indices, masking formats, and captions from Link. Put them to
./data
. Note that we remove some dirty samples from aforementioned datasets. Since Co3dv2 data contains object masks but MVImgNet does not, we additionally provide complete foreground masks for MVImgNet throughCarveKit
. Please put the MVImgNet masks to./data/mvimagenet/masks
.
- RAFT weights (put it to
./check_points/mmflow/
). - SD1.5-inpainting (put it to
./check_points/
). - AnimateDiff weights. We revise the key name for easier
peft
usages (put it to./check_points/
).
Training with fixed nframe=12:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 accelerate launch --mixed_precision="fp16" --num_processes=8 --num_machines 1 --main_process_port 29502 \
--config_file configs/deepspeed/acc_zero2.yaml train.py \
--config_file="configs/mvinpainter_{o,f}.yaml" \
--output_dir="check_points/mvinpainter_{o,f}_256" \
--train_log_interval=250 \
--val_interval=2000 \
--val_cfg=7.5 \
--img_size=256
Finetuning with dynamic frames (8~24):
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 accelerate launch --mixed_precision="fp16" --num_processes=8 --num_machines 1 --main_process_port 29502 \
--config_file configs/deepspeed/acc_zero2.yaml train.py \
--config_file="configs/mvinpainter_{o,f}.yaml" \
--output_dir="check_points/mvinpainter_{o,f}_256" \
--train_log_interval=250 \
--val_interval=2000 \
--val_cfg=7.5 \
--img_size=256 \
--resume_from_checkpoint="latest" \
--dynamic_nframe \
--low_nframe 8 \
--high_nframe 24
Please use mvinpainter_{o,f}_512.yaml
to train 512x512 models.
- MVInpainter-O (Novel view synthesis, put it to
./check_points/
). - MVInpainter-F (Removal, put it to
./check_points/
). - MVInpainter-O-512
- MVInpainter-F-512
- Removing or synthesis foreground of the first view through 2D-inpainting. We recommend using Fooocus-inpainting to accomplish this. Getting tracking masks through Track-Anything.
Some examples are provided in
./demo
.
- <folder>
- images # input images with foregrounds
- inpainted # inpainted result of the first view
- masks # masks for images
- (Optional) removing foregrounds from all other views through
MVInpainter-F
:
CUDA_VISIBLE_DEVICES=0 python test_removal.py \
--load_path="check_points/mvinpainter_f_256" \
--dataset_root="./demo/removal" \
--output_path="demo_removal" \
--resume_from_checkpoint="best" \
--val_cfg=1.0 \
--img_size=256 \
--sampling_interval=1.0 \
--dataset_names realworld \
--reference_path="inpainted" \
--nframe=24 \
--save_images # (whether to save samples respectively)
CUDA_VISIBLE_DEVICES=0 python test_removal.py \
--load_path="check_points/mvinpainter_f_512" \
--dataset_root="./demo/removal" \
--output_path="demo_removal" \
--resume_from_checkpoint="best" \
--val_cfg=1.0 \
--img_size=512 \
--sampling_interval=1.0 \
--dataset_names realworld \
--reference_path="inpainted" \
--nframe=24 \
--save_images
- Achieving 3d bbox of the object generated from 2D-inpainting through
python draw_bbox.py
. Put the image000x.png
and000x.json
from./bbox
toobj_bbox
of the target folder.
- Mask adaption to achieve
warp_masks
. If the basic plane where the foreground placed on enjoys a small percentage of the whole image, please use methods like Grounded-Segment-Anything to getplane_masks
.
CUDA_VISIBLE_DEVICES=0 python mask_adaption.py --input_path="demo/nvs/kitchen" --edited_index=0
You can also use --no_irregular_mask
to disable irregular mask for more precise warped masks.
Make sure the final folder looks like:
- <folder>
- obj_bbox # inpainted 2d images with new foreground and bbox json
- removal # images without foregrounds
- warp_masks # masks from adaption for the removal folder
- plane_masks # (optional, only for mask_adaption) masks of basic plane where the foreground is placed on
- Run
MVInpainter-O
for novel view synthesis:
CUDA_VISIBLE_DEVICES=0 python test_nvs.py \
--load_path="check_points/mvinpainter_o_256" \
--dataset_root="./demo/nvs" \
--output_path="demo_nvs" \
--edited_index=0 \
--resume_from_checkpoint="best" \
--val_cfg=7.5 \
--img_height=256 \
--img_width=256 \
--sampling_interval=1.0 \
--nframe=24 \
--prompt="a red apple with circle and round shape on the table." \
--limit_frame=24
CUDA_VISIBLE_DEVICES=0 python test_nvs.py \
--load_path="check_points/mvinpainter_o_512" \
--dataset_root="./demo/nvs" \
--output_path="demo_nvs" \
--edited_index=0 \
--resume_from_checkpoint="best" \
--val_cfg=7.5 \
--img_height=512 \
--img_width=512 \
--sampling_interval=1.0 \
--nframe=24 \
--prompt="a red apple with circle and round shape on the table." \
--limit_frame=24
- 3D reconstruction: See Dust3R, MVSFormer++, and 3DGS for more details.
If you found our project helpful, please consider citing:
@article{cao2024mvinpainter,
title={MVInpainter: Learning Multi-View Consistent Inpainting to Bridge 2D and 3D Editing},
author={Cao, Chenjie and Yu, Chaohui and Fu, Yanwei and Wang, Fan and Xue, Xiangyang},
journal={arXiv preprint arXiv:2408.08000},
year={2024}
}