Pytorch implementation of Sample-level Deep Convolutional Neural Networks for Music Auto-tagging Using Raw Waveforms
- Used tag annotations and audio data
How to unzip the data (found at keunwoochoi/magnatagatune-list):
After downloading the three files,
cat mp3.zip.* > mp3_all.zip
to merge them, then unzip it by
unzip mp3_all.zip
You get 16 folders, '0' to '9' and 'a' to 'f'.
9 1D conv layers and input sample size of 59049 (~3 seconds)
- Fix
config.py
file - Data processing
- run
python audio_processor.py
: audio (to read audio signal from mp3s and save as npy) - run
python annot_processor.py
: annotation (process redundant tags and select top N=50 tags)- this will create and save train/valid/test annotation files
- run
- Training
- You can set multigpu option by listing all the available devices
- Ex.
python main.py --gpus 0 1
- Ex.
python main.py
will use 1 gpu if available as a default
- run
python eval_tags.py --gpus 0 1 --mp3_file "path/to/mp3file/to/predict.mp3"