TL;DR: We present a novel, training-free approach to scene change detection by leveraging a tracking model.
- Download the DEVA weights from this repository.
- Download the SAM weights from this repository.
- Place the downloaded weights in the
model_weights
folder.
Download the datasets and set the file structure as follows.
Only the test dataset is required.
Edit dataset/path_config.py
to set the dataset directory path.
ChangSim
├── Query
│ └── Query_Seq_Test
│ ├── Warehouse_6
│ │ ├── Seq_0
│ │ │ └── ...
│ │ └── Seq_1
│ │ └── ...
│ ├── ...
│ │
│ └── Warehouse_8
│ ├── Seq_0
│ │ └── ...
│ └── Seq_1
│ └── ...
│
└── Ref
└── Ref_Seq_Test
├── Warehouse_6
│ ├── Seq_0
│ │ └── ...
│ └── Seq_1
│ └── ...
├── ...
│
└── Warehouse_8
├── Seq_0
│ └── ...
└── Seq_1
└── ...
- VL-CMU-CD
VL-CMU-CD-binary255
└── test
├── t0
├── t1
└── mask
PCD
├── TSUNAMI
│ ├── t0
│ ├── t1
│ ├── ground_truth
│ └── mask
└── GSV
├── t0
├── t1
├── ground_truth
└── mask
- ChangeSim
$ python main.py
$ python main.py --changesim_subset dark
$ python main.py --changesim_subset dust
- VL_CMU_CD
$ python main.py --dataset VL_CMU_CD
- PCD
$ python main.py --dataset TSUNAMI
$ python main.py --dataset GSV
Our pytorch implementation is based on the following projects and repos.