facebookresearch/adaptive_teacher

Why your test scale is larger than 600?

Yorionice1 opened this issue · 3 comments

Thanks for your working. I found the test scale is 800, which is larger than it in other papers in this field.

Yes, we do not revise the default test scale. I think the performance can be improved if the test scale is fixed.

Thanks for your reply. But I still can't get the accuracy reported in your paper (50.9), my result is around 45.2 on 4 GPUs with IMG_PER_BATCH_LABEL: 8, IMG_PER_BATCH_UNLABEL: 8, BASE_LR: 0.04. Rest of the settings are same as original config file uploaded by you.

MODEL:

META_ARCHITECTURE: "DAobjTwoStagePseudoLabGeneralizedRCNN"
BACKBONE:
NAME: "build_vgg_backbone"
MASK_ON: False
RESNETS:
DEPTH: 101
PROPOSAL_GENERATOR:
NAME: "PseudoLabRPN"

RPN:
IN_FEATURES: ["vgg4"]
ROI_HEADS:
NAME: "StandardROIHeadsPseudoLab"
LOSS: "CrossEntropy" # variant: "CrossEntropy"
NUM_CLASSES: 8
IN_FEATURES: ["vgg4"]
ROI_BOX_HEAD:
NAME: "FastRCNNConvFCHead"
NUM_FC: 2
POOLER_RESOLUTION: 7
SOLVER:
LR_SCHEDULER_NAME: "WarmupTwoStageMultiStepLR"
STEPS: (60000, 80000, 90000, 360000)
FACTOR_LIST: (1, 1, 1, 1, 1)
MAX_ITER: 100000
IMG_PER_BATCH_LABEL: 8
IMG_PER_BATCH_UNLABEL: 8
BASE_LR: 0.04
DATALOADER:
SUP_PERCENT: 100.0
DATASETS:
CROSS_DATASET: True
TRAIN_LABEL: ("cityscapes_train",)
TRAIN_UNLABEL: ("cityscapes_foggy_train",)
TEST: ("cityscapes_foggy_val",)
SEMISUPNET:
Trainer: "ateacher"
BBOX_THRESHOLD: 0.8
TEACHER_UPDATE_ITER: 1
BURN_UP_STEP: 20000
EMA_KEEP_RATE: 0.9996
UNSUP_LOSS_WEIGHT: 1.0
SUP_LOSS_WEIGHT: 0.5
DIS_TYPE: "vgg4" #["concate","p2","multi"]
TEST:
EVAL_PERIOD: 1000

[09/30 02:19:46] detectron2 INFO: Running with full config:
CUDNN_BENCHMARK: false
DATALOADER:
ASPECT_RATIO_GROUPING: true
FILTER_EMPTY_ANNOTATIONS: true
NUM_WORKERS: 4
RANDOM_DATA_SEED: 0
RANDOM_DATA_SEED_PATH: dataseed/COCO_supervision.txt
REPEAT_THRESHOLD: 0.0
SAMPLER_TRAIN: TrainingSampler
SUP_PERCENT: 100.0
DATASETS:
CROSS_DATASET: true
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
PROPOSAL_FILES_TEST: []
PROPOSAL_FILES_TRAIN: []
TEST:

  • cityscapes_foggy_val
    TRAIN:
  • coco_2017_train
    TRAIN_LABEL:
  • cityscapes_train
    TRAIN_UNLABEL:
  • cityscapes_foggy_train
    EMAMODEL:
    SUP_CONSIST: true
    GLOBAL:
    HACK: 1.0
    INPUT:
    CROP:
    ENABLED: false
    SIZE:
    • 0.9
    • 0.9
      TYPE: relative_range
      FORMAT: BGR
      MASK_FORMAT: polygon
      MAX_SIZE_TEST: 1333
      MAX_SIZE_TRAIN: 1333
      MIN_SIZE_TEST: 800
      MIN_SIZE_TRAIN:
  • 600
    MIN_SIZE_TRAIN_SAMPLING: choice
    RANDOM_FLIP: horizontal
    MODEL:
    ANCHOR_GENERATOR:
    ANGLES:
      • -90
      • 0
      • 90
        ASPECT_RATIOS:
      • 0.5
      • 1.0
      • 2.0
        NAME: DefaultAnchorGenerator
        OFFSET: 0.0
        SIZES:
      • 32
      • 64
      • 128
      • 256
      • 512
        BACKBONE:
        FREEZE_AT: 2
        NAME: build_vgg_backbone
        DEVICE: cuda
        FPN:
        FUSE_TYPE: sum
        IN_FEATURES: []
        NORM: ''
        OUT_CHANNELS: 256
        KEYPOINT_ON: false
        LOAD_PROPOSALS: false
        MASK_ON: false
        META_ARCHITECTURE: DAobjTwoStagePseudoLabGeneralizedRCNN
        PANOPTIC_FPN:
        COMBINE:
        ENABLED: true
        INSTANCES_CONFIDENCE_THRESH: 0.5
        OVERLAP_THRESH: 0.5
        STUFF_AREA_LIMIT: 4096
        INSTANCE_LOSS_WEIGHT: 1.0
        PIXEL_MEAN:
  • 103.53
  • 116.28
  • 123.675
    PIXEL_STD:
  • 1.0
  • 1.0
  • 1.0
    PROPOSAL_GENERATOR:
    MIN_SIZE: 0
    NAME: PseudoLabRPN
    RESNETS:
    DEFORM_MODULATED: false
    DEFORM_NUM_GROUPS: 1
    DEFORM_ON_PER_STAGE:
    • false
    • false
    • false
    • false
      DEPTH: 101
      NORM: FrozenBN
      NUM_GROUPS: 1
      OUT_FEATURES:
    • res4
      RES2_OUT_CHANNELS: 256
      RES5_DILATION: 1
      STEM_OUT_CHANNELS: 64
      STRIDE_IN_1X1: true
      WIDTH_PER_GROUP: 64
      RETINANET:
      BBOX_REG_LOSS_TYPE: smooth_l1
      BBOX_REG_WEIGHTS:
    • 1.0
    • 1.0
    • 1.0
    • 1.0
      FOCAL_LOSS_ALPHA: 0.25
      FOCAL_LOSS_GAMMA: 2.0
      IN_FEATURES:
    • p3
    • p4
    • p5
    • p6
    • p7
      IOU_LABELS:
    • 0
    • -1
    • 1
      IOU_THRESHOLDS:
    • 0.4
    • 0.5
      NMS_THRESH_TEST: 0.5
      NORM: ''
      NUM_CLASSES: 80
      NUM_CONVS: 4
      PRIOR_PROB: 0.01
      SCORE_THRESH_TEST: 0.05
      SMOOTH_L1_LOSS_BETA: 0.1
      TOPK_CANDIDATES_TEST: 1000
      ROI_BOX_CASCADE_HEAD:
      BBOX_REG_WEIGHTS:
      • 10.0
      • 10.0
      • 5.0
      • 5.0
      • 20.0
      • 20.0
      • 10.0
      • 10.0
      • 30.0
      • 30.0
      • 15.0
      • 15.0
        IOUS:
    • 0.5
    • 0.6
    • 0.7
      ROI_BOX_HEAD:
      BBOX_REG_LOSS_TYPE: smooth_l1
      BBOX_REG_LOSS_WEIGHT: 1.0
      BBOX_REG_WEIGHTS:
    • 10.0
    • 10.0
    • 5.0
    • 5.0
      CLS_AGNOSTIC_BBOX_REG: false
      CONV_DIM: 256
      FC_DIM: 1024
      NAME: FastRCNNConvFCHead
      NORM: ''
      NUM_CONV: 0
      NUM_FC: 2
      POOLER_RESOLUTION: 7
      POOLER_SAMPLING_RATIO: 0
      POOLER_TYPE: ROIAlignV2
      SMOOTH_L1_BETA: 0.0
      TRAIN_ON_PRED_BOXES: false
      ROI_HEADS:
      BATCH_SIZE_PER_IMAGE: 512
      IN_FEATURES:
    • vgg4
      IOU_LABELS:
    • 0
    • 1
      IOU_THRESHOLDS:
    • 0.5
      LOSS: CrossEntropy
      NAME: StandardROIHeadsPseudoLab
      NMS_THRESH_TEST: 0.5
      NUM_CLASSES: 8
      POSITIVE_FRACTION: 0.25
      PROPOSAL_APPEND_GT: true
      SCORE_THRESH_TEST: 0.05
      ROI_KEYPOINT_HEAD:
      CONV_DIMS:
    • 512
    • 512
    • 512
    • 512
    • 512
    • 512
    • 512
    • 512
      LOSS_WEIGHT: 1.0
      MIN_KEYPOINTS_PER_IMAGE: 1
      NAME: KRCNNConvDeconvUpsampleHead
      NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
      NUM_KEYPOINTS: 17
      POOLER_RESOLUTION: 14
      POOLER_SAMPLING_RATIO: 0
      POOLER_TYPE: ROIAlignV2
      ROI_MASK_HEAD:
      CLS_AGNOSTIC_MASK: false
      CONV_DIM: 256
      NAME: MaskRCNNConvUpsampleHead
      NORM: ''
      NUM_CONV: 0
      POOLER_RESOLUTION: 14
      POOLER_SAMPLING_RATIO: 0
      POOLER_TYPE: ROIAlignV2
      RPN:
      BATCH_SIZE_PER_IMAGE: 256
      BBOX_REG_LOSS_TYPE: smooth_l1
      BBOX_REG_LOSS_WEIGHT: 1.0
      BBOX_REG_WEIGHTS:
    • 1.0
    • 1.0
    • 1.0
    • 1.0
      BOUNDARY_THRESH: -1
      CONV_DIMS:
    • -1
      HEAD_NAME: StandardRPNHead
      IN_FEATURES:
    • vgg4
      IOU_LABELS:
    • 0
    • -1
    • 1
      IOU_THRESHOLDS:
    • 0.3
    • 0.7
      LOSS: CrossEntropy
      LOSS_WEIGHT: 1.0
      NMS_THRESH: 0.7
      POSITIVE_FRACTION: 0.5
      POST_NMS_TOPK_TEST: 1000
      POST_NMS_TOPK_TRAIN: 2000
      PRE_NMS_TOPK_TEST: 6000
      PRE_NMS_TOPK_TRAIN: 12000
      SMOOTH_L1_BETA: 0.0
      UNSUP_LOSS_WEIGHT: 1.0
      SEM_SEG_HEAD:
      COMMON_STRIDE: 4
      CONVS_DIM: 128
      IGNORE_VALUE: 255
      IN_FEATURES:
    • p2
    • p3
    • p4
    • p5
      LOSS_WEIGHT: 1.0
      NAME: SemSegFPNHead
      NORM: GN
      NUM_CLASSES: 54
      WEIGHTS: ''
      OUTPUT_DIR: output/exp_city
      SEED: -1
      SEMISUPNET:
      BBOX_THRESHOLD: 0.8
      BURN_UP_STEP: 20000
      DIS_LOSS_WEIGHT: 0.1
      DIS_TYPE: vgg4
      EMA_KEEP_RATE: 0.9996
      LOSS_WEIGHT_TYPE: standard
      MLP_DIM: 128
      PSEUDO_BBOX_SAMPLE: thresholding
      SUP_LOSS_WEIGHT: 0.5
      TEACHER_UPDATE_ITER: 1
      Trainer: ateacher
      UNSUP_LOSS_WEIGHT: 1.0
      SOLVER:
      AMP:
      ENABLED: false
      BASE_LR: 0.04
      BIAS_LR_FACTOR: 1.0
      CHECKPOINT_PERIOD: 5000
      CLIP_GRADIENTS:
      CLIP_TYPE: value
      CLIP_VALUE: 1.0
      ENABLED: false
      NORM_TYPE: 2.0
      FACTOR_LIST:
  • 1
  • 1
  • 1
  • 1
  • 1
    GAMMA: 0.1
    IMG_PER_BATCH_LABEL: 8
    IMG_PER_BATCH_UNLABEL: 8
    IMS_PER_BATCH: 16
    LR_SCHEDULER_NAME: WarmupTwoStageMultiStepLR
    MAX_ITER: 100000
    MOMENTUM: 0.9
    NESTEROV: false
    REFERENCE_WORLD_SIZE: 0
    STEPS:
  • 60000
  • 80000
  • 90000
  • 360000
    WARMUP_FACTOR: 0.001
    WARMUP_ITERS: 1000
    WARMUP_METHOD: linear
    WEIGHT_DECAY: 0.0001
    WEIGHT_DECAY_BIAS: 0.0001
    WEIGHT_DECAY_NORM: 0.0
    TEST:
    AUG:
    ENABLED: false
    FLIP: true
    MAX_SIZE: 4000
    MIN_SIZES:
    • 400
    • 500
    • 600
    • 700
    • 800
    • 900
    • 1000
    • 1100
    • 1200
      DETECTIONS_PER_IMAGE: 100
      EVALUATOR: COCOeval
      EVAL_PERIOD: 1000
      EXPECTED_RESULTS: []
      KEYPOINT_OKS_SIGMAS: []
      PRECISE_BN:
      ENABLED: false
      NUM_ITER: 200
      VAL_LOSS: true
      VERSION: 2
      VIS_PERIOD: 0