Why your test scale is larger than 600?
Yorionice1 opened this issue · 3 comments
Thanks for your working. I found the test scale is 800, which is larger than it in other papers in this field.
Yes, we do not revise the default test scale. I think the performance can be improved if the test scale is fixed.
Thanks for your reply. But I still can't get the accuracy reported in your paper (50.9), my result is around 45.2 on 4 GPUs with IMG_PER_BATCH_LABEL: 8, IMG_PER_BATCH_UNLABEL: 8, BASE_LR: 0.04. Rest of the settings are same as original config file uploaded by you.
MODEL:
META_ARCHITECTURE: "DAobjTwoStagePseudoLabGeneralizedRCNN"
BACKBONE:
NAME: "build_vgg_backbone"
MASK_ON: False
RESNETS:
DEPTH: 101
PROPOSAL_GENERATOR:
NAME: "PseudoLabRPN"
RPN:
IN_FEATURES: ["vgg4"]
ROI_HEADS:
NAME: "StandardROIHeadsPseudoLab"
LOSS: "CrossEntropy" # variant: "CrossEntropy"
NUM_CLASSES: 8
IN_FEATURES: ["vgg4"]
ROI_BOX_HEAD:
NAME: "FastRCNNConvFCHead"
NUM_FC: 2
POOLER_RESOLUTION: 7
SOLVER:
LR_SCHEDULER_NAME: "WarmupTwoStageMultiStepLR"
STEPS: (60000, 80000, 90000, 360000)
FACTOR_LIST: (1, 1, 1, 1, 1)
MAX_ITER: 100000
IMG_PER_BATCH_LABEL: 8
IMG_PER_BATCH_UNLABEL: 8
BASE_LR: 0.04
DATALOADER:
SUP_PERCENT: 100.0
DATASETS:
CROSS_DATASET: True
TRAIN_LABEL: ("cityscapes_train",)
TRAIN_UNLABEL: ("cityscapes_foggy_train",)
TEST: ("cityscapes_foggy_val",)
SEMISUPNET:
Trainer: "ateacher"
BBOX_THRESHOLD: 0.8
TEACHER_UPDATE_ITER: 1
BURN_UP_STEP: 20000
EMA_KEEP_RATE: 0.9996
UNSUP_LOSS_WEIGHT: 1.0
SUP_LOSS_WEIGHT: 0.5
DIS_TYPE: "vgg4" #["concate","p2","multi"]
TEST:
EVAL_PERIOD: 1000
[09/30 02:19:46] detectron2 INFO: Running with full config:
CUDNN_BENCHMARK: false
DATALOADER:
ASPECT_RATIO_GROUPING: true
FILTER_EMPTY_ANNOTATIONS: true
NUM_WORKERS: 4
RANDOM_DATA_SEED: 0
RANDOM_DATA_SEED_PATH: dataseed/COCO_supervision.txt
REPEAT_THRESHOLD: 0.0
SAMPLER_TRAIN: TrainingSampler
SUP_PERCENT: 100.0
DATASETS:
CROSS_DATASET: true
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
PROPOSAL_FILES_TEST: []
PROPOSAL_FILES_TRAIN: []
TEST:
- cityscapes_foggy_val
TRAIN: - coco_2017_train
TRAIN_LABEL: - cityscapes_train
TRAIN_UNLABEL: - cityscapes_foggy_train
EMAMODEL:
SUP_CONSIST: true
GLOBAL:
HACK: 1.0
INPUT:
CROP:
ENABLED: false
SIZE:- 0.9
- 0.9
TYPE: relative_range
FORMAT: BGR
MASK_FORMAT: polygon
MAX_SIZE_TEST: 1333
MAX_SIZE_TRAIN: 1333
MIN_SIZE_TEST: 800
MIN_SIZE_TRAIN:
- 600
MIN_SIZE_TRAIN_SAMPLING: choice
RANDOM_FLIP: horizontal
MODEL:
ANCHOR_GENERATOR:
ANGLES:-
- -90
- 0
- 90
ASPECT_RATIOS:
-
- 0.5
- 1.0
- 2.0
NAME: DefaultAnchorGenerator
OFFSET: 0.0
SIZES:
-
- 32
- 64
- 128
- 256
- 512
BACKBONE:
FREEZE_AT: 2
NAME: build_vgg_backbone
DEVICE: cuda
FPN:
FUSE_TYPE: sum
IN_FEATURES: []
NORM: ''
OUT_CHANNELS: 256
KEYPOINT_ON: false
LOAD_PROPOSALS: false
MASK_ON: false
META_ARCHITECTURE: DAobjTwoStagePseudoLabGeneralizedRCNN
PANOPTIC_FPN:
COMBINE:
ENABLED: true
INSTANCES_CONFIDENCE_THRESH: 0.5
OVERLAP_THRESH: 0.5
STUFF_AREA_LIMIT: 4096
INSTANCE_LOSS_WEIGHT: 1.0
PIXEL_MEAN:
-
- 103.53
- 116.28
- 123.675
PIXEL_STD: - 1.0
- 1.0
- 1.0
PROPOSAL_GENERATOR:
MIN_SIZE: 0
NAME: PseudoLabRPN
RESNETS:
DEFORM_MODULATED: false
DEFORM_NUM_GROUPS: 1
DEFORM_ON_PER_STAGE:- false
- false
- false
- false
DEPTH: 101
NORM: FrozenBN
NUM_GROUPS: 1
OUT_FEATURES: - res4
RES2_OUT_CHANNELS: 256
RES5_DILATION: 1
STEM_OUT_CHANNELS: 64
STRIDE_IN_1X1: true
WIDTH_PER_GROUP: 64
RETINANET:
BBOX_REG_LOSS_TYPE: smooth_l1
BBOX_REG_WEIGHTS: - 1.0
- 1.0
- 1.0
- 1.0
FOCAL_LOSS_ALPHA: 0.25
FOCAL_LOSS_GAMMA: 2.0
IN_FEATURES: - p3
- p4
- p5
- p6
- p7
IOU_LABELS: - 0
- -1
- 1
IOU_THRESHOLDS: - 0.4
- 0.5
NMS_THRESH_TEST: 0.5
NORM: ''
NUM_CLASSES: 80
NUM_CONVS: 4
PRIOR_PROB: 0.01
SCORE_THRESH_TEST: 0.05
SMOOTH_L1_LOSS_BETA: 0.1
TOPK_CANDIDATES_TEST: 1000
ROI_BOX_CASCADE_HEAD:
BBOX_REG_WEIGHTS: -
- 10.0
- 10.0
- 5.0
- 5.0
-
- 20.0
- 20.0
- 10.0
- 10.0
-
- 30.0
- 30.0
- 15.0
- 15.0
IOUS:
- 0.5
- 0.6
- 0.7
ROI_BOX_HEAD:
BBOX_REG_LOSS_TYPE: smooth_l1
BBOX_REG_LOSS_WEIGHT: 1.0
BBOX_REG_WEIGHTS: - 10.0
- 10.0
- 5.0
- 5.0
CLS_AGNOSTIC_BBOX_REG: false
CONV_DIM: 256
FC_DIM: 1024
NAME: FastRCNNConvFCHead
NORM: ''
NUM_CONV: 0
NUM_FC: 2
POOLER_RESOLUTION: 7
POOLER_SAMPLING_RATIO: 0
POOLER_TYPE: ROIAlignV2
SMOOTH_L1_BETA: 0.0
TRAIN_ON_PRED_BOXES: false
ROI_HEADS:
BATCH_SIZE_PER_IMAGE: 512
IN_FEATURES: - vgg4
IOU_LABELS: - 0
- 1
IOU_THRESHOLDS: - 0.5
LOSS: CrossEntropy
NAME: StandardROIHeadsPseudoLab
NMS_THRESH_TEST: 0.5
NUM_CLASSES: 8
POSITIVE_FRACTION: 0.25
PROPOSAL_APPEND_GT: true
SCORE_THRESH_TEST: 0.05
ROI_KEYPOINT_HEAD:
CONV_DIMS: - 512
- 512
- 512
- 512
- 512
- 512
- 512
- 512
LOSS_WEIGHT: 1.0
MIN_KEYPOINTS_PER_IMAGE: 1
NAME: KRCNNConvDeconvUpsampleHead
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
NUM_KEYPOINTS: 17
POOLER_RESOLUTION: 14
POOLER_SAMPLING_RATIO: 0
POOLER_TYPE: ROIAlignV2
ROI_MASK_HEAD:
CLS_AGNOSTIC_MASK: false
CONV_DIM: 256
NAME: MaskRCNNConvUpsampleHead
NORM: ''
NUM_CONV: 0
POOLER_RESOLUTION: 14
POOLER_SAMPLING_RATIO: 0
POOLER_TYPE: ROIAlignV2
RPN:
BATCH_SIZE_PER_IMAGE: 256
BBOX_REG_LOSS_TYPE: smooth_l1
BBOX_REG_LOSS_WEIGHT: 1.0
BBOX_REG_WEIGHTS: - 1.0
- 1.0
- 1.0
- 1.0
BOUNDARY_THRESH: -1
CONV_DIMS: - -1
HEAD_NAME: StandardRPNHead
IN_FEATURES: - vgg4
IOU_LABELS: - 0
- -1
- 1
IOU_THRESHOLDS: - 0.3
- 0.7
LOSS: CrossEntropy
LOSS_WEIGHT: 1.0
NMS_THRESH: 0.7
POSITIVE_FRACTION: 0.5
POST_NMS_TOPK_TEST: 1000
POST_NMS_TOPK_TRAIN: 2000
PRE_NMS_TOPK_TEST: 6000
PRE_NMS_TOPK_TRAIN: 12000
SMOOTH_L1_BETA: 0.0
UNSUP_LOSS_WEIGHT: 1.0
SEM_SEG_HEAD:
COMMON_STRIDE: 4
CONVS_DIM: 128
IGNORE_VALUE: 255
IN_FEATURES: - p2
- p3
- p4
- p5
LOSS_WEIGHT: 1.0
NAME: SemSegFPNHead
NORM: GN
NUM_CLASSES: 54
WEIGHTS: ''
OUTPUT_DIR: output/exp_city
SEED: -1
SEMISUPNET:
BBOX_THRESHOLD: 0.8
BURN_UP_STEP: 20000
DIS_LOSS_WEIGHT: 0.1
DIS_TYPE: vgg4
EMA_KEEP_RATE: 0.9996
LOSS_WEIGHT_TYPE: standard
MLP_DIM: 128
PSEUDO_BBOX_SAMPLE: thresholding
SUP_LOSS_WEIGHT: 0.5
TEACHER_UPDATE_ITER: 1
Trainer: ateacher
UNSUP_LOSS_WEIGHT: 1.0
SOLVER:
AMP:
ENABLED: false
BASE_LR: 0.04
BIAS_LR_FACTOR: 1.0
CHECKPOINT_PERIOD: 5000
CLIP_GRADIENTS:
CLIP_TYPE: value
CLIP_VALUE: 1.0
ENABLED: false
NORM_TYPE: 2.0
FACTOR_LIST:
- 1
- 1
- 1
- 1
- 1
GAMMA: 0.1
IMG_PER_BATCH_LABEL: 8
IMG_PER_BATCH_UNLABEL: 8
IMS_PER_BATCH: 16
LR_SCHEDULER_NAME: WarmupTwoStageMultiStepLR
MAX_ITER: 100000
MOMENTUM: 0.9
NESTEROV: false
REFERENCE_WORLD_SIZE: 0
STEPS: - 60000
- 80000
- 90000
- 360000
WARMUP_FACTOR: 0.001
WARMUP_ITERS: 1000
WARMUP_METHOD: linear
WEIGHT_DECAY: 0.0001
WEIGHT_DECAY_BIAS: 0.0001
WEIGHT_DECAY_NORM: 0.0
TEST:
AUG:
ENABLED: false
FLIP: true
MAX_SIZE: 4000
MIN_SIZES:- 400
- 500
- 600
- 700
- 800
- 900
- 1000
- 1100
- 1200
DETECTIONS_PER_IMAGE: 100
EVALUATOR: COCOeval
EVAL_PERIOD: 1000
EXPECTED_RESULTS: []
KEYPOINT_OKS_SIGMAS: []
PRECISE_BN:
ENABLED: false
NUM_ITER: 200
VAL_LOSS: true
VERSION: 2
VIS_PERIOD: 0