/muavic

MuAViC: A Multilingual Audio-Visual Corpus for Robust Speech Recognition and Robust Speech-to-Text Translation

Primary LanguagePythonOtherNOASSERTION

MuAViC

A Multilingual Audio-Visual Corpus for Robust Speech Recognition and Robust Speech-to-Text Translation.

Paper

Overview

MuAViC provides

  • 1200 hours of transcribed audio-visual speech for 9 languages (English, Arabic, German, Greek, Spanish, French, Italian, Portuguese and Russian)
  • text translations for 6 English-to-X directions and 6 X-to-English directions (X = Greek, Spanish, French, Italian, Portuguese or Russian)
MuAViC data statistics

The raw data is collected from TED/TEDx talk recordings.

Detailed statistics

Audio-Visual Speech Recognition

Language Code Train Hours (H+P) Train Speakers
English En 436 + 0 4.7K
Arabic Ar 16 + 0 95
German De 10 + 0 53
Greek El 25 + 0 113
Spanish Es 178 + 0 987
French Fr 176 + 0 948
Italian It 101 + 0 487
Portuguese Pt 153 + 0 810
Russian Ru 49 + 0 238

Audio-Visual En-X Speech-to-Text Translation

Direction Code Train Hours (H+P) Train Speakers
English-Greek En-El 17 + 420 4.7K
English-Spanish En-Es 21 + 416 4.7K
English-French En-Fr 21 + 416 4.7K
English-Italian En-It 20 + 417 4.7K
English-Portuguese En-Pt 18 + 419 4.7K
English-Russian En-Ru 20 + 417 4.7K

Audio-Visual X-En Speech-to-Text Translation

Direction Code Train Hours (H+P) Train Speakers
Greek-English El-En 8 + 17 113
Spanish-English Es-En 64 + 114 987
French-English Fr-En 45 + 131 948
Italian-English It-En 48 + 53 487
Portuguese-English Pt-En 53 + 100 810
Russian-English Ru-En 8 + 41 238

Getting Data

We provide scripts to generate the audio/video data and AV-HuBERT training manifests for MuAViC.

First, clone this repo for the scripts

git clone https://github.com/facebookresearch/muavic.git

Install required packages:

conda install -c conda-forge ffmpeg==4.2.2
conda install -c conda-forge sox
pip install -r requirements.txt

Then get audio-visual speech recognition and translation data via

python get_data.py --root-path ${ROOT} --src-lang ${SRC_LANG}

where the speech language ${SRC_LANG} is one of en, ar, de, el, es, fr, it, pt and ru.

Generated data will be saved to ${ROOT}/muavic:

  • ${ROOT}/muavic/${SRC_LANG}/audio for processed audio files
  • ${ROOT}/muavic/${SRC_LANG}/video for processed video files
  • ${ROOT}/muavic/${SRC_LANG}/*.tsv for AV-HuBERT AVSR training manifests
  • ${ROOT}/muavic/${SRC_LANG}/${TGT_LANG}/*.tsv for AV-HuBERT AVST training manifests

Models

In the following table, we provide all end-to-end trained models mentioned in our paper:

Task Languages Best Checkpoint Dictionary Tokenizer
AVSR ar best_ckpt.pt dict tokenizer
de best_ckpt.pt dict tokenizer
el best_ckpt.pt dict tokenizer
en best_ckpt.pt dict tokenizer
es best_ckpt.pt dict tokenizer
fr best_ckpt.pt dict tokenizer
it best_ckpt.pt dict tokenizer
pt best_ckpt.pt dict tokenizer
ru best_ckpt.pt dict tokenizer
ar,de,el,es,fr,it,pt,ru best_ckpt.pt dict tokenizer
AVST en-el best_ckpt.pt dict tokenizer
en-es best_ckpt.pt dict tokenizer
en-fr best_ckpt.pt dict tokenizer
en-it best_ckpt.pt dict tokenizer
en-pt best_ckpt.pt dict tokenizer
en-ru best_ckpt.pt dict tokenizer
el-en best_ckpt.pt dict tokenizer
es-en best_ckpt.pt dict tokenizer
fr-en best_ckpt.pt dict tokenizer
it-en best_ckpt.pt dict tokenizer
pt-en best_ckpt.pt dict tokenizer
ru-en best_ckpt.pt dict tokenizer
{el,es,fr,it,pt,ru}-en best_ckpt.pt dict tokenizer

Demo

To try out our state-of-the-art audio-visual models with different audio and video inputs, including a recorded video through the webcam or an uploaded video, checkout our demo:

demo.mp4

You can read more about our model in the README file in the demo folder.

Training

For training Audio-Visual models, we are going to use AV-HuBERT framework.

  1. Clone and install AV-HuBERT in the root directory:

    $ # Clone the "muavic" branch of av_hubert's repo
    $ git -b muavic clone https://github.com/facebookresearch/av_hubert.git
    $ # Set the fairseq version
    $ cd avhubert
    $ git submodule init
    $ git submodule update
    $ # Install av-hubert's requirements
    $ pip install -r requirements.txt
    $ # Install fairseq
    $ cd fairseq
    $ pip install --editable ./
  2. Download an AV-HuBERT pre-trained model from here.

  3. Open the training script (scripts/train.sh) and replace these variables:

    # language direction (e.g "en" or "en-fr")
    LANG=
    
    # path where output trained models will be located
    OUT_PATH= 
    
    # path to the downloaded pre-trained model
    PRETRAINED_MODEL_PATH=
  4. Run the training script:

    $ bash scripts/train.sh

Note:
All audio-visual models found here used the large_vox_iter5.pt pre-trained model.

Decoding/Evaluating

To evaluate your trained model (or our trained models) against MuAViC, follow these steps:

  1. Open the decoding script (scripts/decode.sh) and replace these variables:

    # language direction (e.g "en" or "en-fr")
    LANG=???
    
    # data split (e.g "test" or "valid")
    GROUP=???
    
    # inference modality (choices: "audio", "video", "audio,video")
    MODALITIES=???
    
    # path to the trained model
    MODEL_PATH=???
    
    # path where decoding results and scores will be located
    OUT_PATH=???
  2. Run the decoding script:

    $ bash scripts/decode.sh

License

CC-BY-NC 4.0

Citation

@article{anwar2023muavic,
  title={MuAViC: A Multilingual Audio-Visual Corpus for Robust Speech Recognition and Robust Speech-to-Text Translation},
  author={Anwar, Mohamed and Shi, Bowen and Goswami, Vedanuj and Hsu, Wei-Ning and Pino, Juan and Wang, Changhan},
  journal={arXiv preprint arXiv:2303.00628},
  year={2023}
}