/TensorflowLite-bin

Prebuilt binary for TensorflowLite's standalone installer. Fast tuning with MultiTread. For RaspberryPi. A very lightweight installer.

Primary LanguagePythonApache License 2.0Apache-2.0

TensorflowLite-bin

Prebuilt binary for TensorflowLite's standalone installer. Fast tuning with MultiTread. For RaspberryPi.
Here is the Tensorflow's official README.

If you want the best performance with RaspberryPi4/3, install Ubuntu 18.04+ aarch64 (64bit) instead of Raspbian armv7l (32bit). The official Tensorflow Lite is performance tuned for aarch64. On aarch64 OS, performance is about 4 times higher than on armv7l OS.
How to install Ubuntu 19.10 aarch64 (64bit) on RaspberryPi4 - Qiita - PINTO

The full build package for Tensorflow can be found here (Tensorflow-bin).

TensorFlow Lite will continue to have TensorFlow Lite builtin ops optimized for mobile and embedded devices. However, TensorFlow Lite models can now use a subset of TensorFlow ops when TFLite builtin ops are not sufficient.
1. TensorflowLite-flexdelegate (Tensorflow Select Ops) - Github - PINTO0309
2. Select TensorFlow operators to use in TensorFlow Lite

A repository that shares tuning results of trained models generated by Tensorflow. Post-training quantization (Weight Quantization, Integer Quantization, Full Integer Quantization), Quantization-aware training.
PINTO_model_zoo - Github - PINTO0309

Reference articles

Python API packages

Device OS Distribution Architecture Python ver Note
RaspberryPi3/4 Raspbian/Debian Stretch armhf / armv7l 3.5 32bit
RaspberryPi3/4 Raspbian/Debian Buster armhf / armv7l 3.7 / 2.7 32bit
RaspberryPi3/4 Raspbian/Debian Stretch aarch64 / armv8 3.5 64bit
RaspberryPi3/4 Raspbian/Debian Buster aarch64 / armv8 3.7 / 2.7 64bit
RaspberryPi3/4 Ubuntu 18.04 Bionic armhf / armv7l 3.6 32bit
RaspberryPi3/4 Ubuntu 18.04 Bionic aarch64 / armv8 3.6 64bit

Usage

Python3.5 - Stretch

$ sudo apt install swig libjpeg-dev zlib1g-dev python3-dev python3-numpy \
                   unzip wget python3-pip curl git cmake make
$ wget https://github.com/PINTO0309/TensorflowLite-bin/raw/master/2.2.0/tflite_runtime-2.2.0-cp35-cp35m-linux_armv7l.whl
$ sudo pip3 install --upgrade tflite_runtime-2.2.0-cp35-cp35m-linux_armv7l.whl

Python3.7 - Buster

$ sudo apt install swig libjpeg-dev zlib1g-dev python3-dev python3-numpy \
                   unzip wget python3-pip curl git cmake make
$ wget https://github.com/PINTO0309/TensorflowLite-bin/raw/master/2.2.0/tflite_runtime-2.2.0-cp37-cp37m-linux_armv7l.whl
$ sudo pip3 install --upgrade tflite_runtime-2.2.0-cp37-cp37m-linux_armv7l.whl

Note

Unlike tensorflow this will be installed to a tflite_runtime namespace.
You can then use the Tensorflow Lite interpreter as.

from tflite_runtime.interpreter import Interpreter
### Tensorflow v2.2.0
interpreter = Interpreter(model_path="foo.tflite")
### Tensorflow v2.3.0+
interpreter = Interpreter(model_path="foo.tflite", num_threads=4)

Build parameter

  • Tensorflow v2.2.0 version or earlier
cd tensorflow/tensorflow/lite/tools/pip_package
make BASE_IMAGE=debian:stretch PYTHON=python3 TENSORFLOW_TARGET=rpi BUILD_DEB=y docker-build
make BASE_IMAGE=debian:buster PYTHON=python3 TENSORFLOW_TARGET=rpi BUILD_DEB=y docker-build
make BASE_IMAGE=debian:stretch PYTHON=python3 TENSORFLOW_TARGET=aarch64 BUILD_DEB=y docker-build
make BASE_IMAGE=debian:buster PYTHON=python3 TENSORFLOW_TARGET=aarch64 BUILD_DEB=y docker-build
make BASE_IMAGE=ubuntu:18.04 PYTHON=python3 TENSORFLOW_TARGET=aarch64 BUILD_DEB=y docker-build
make BASE_IMAGE=ubuntu:18.04 PYTHON=python3 TENSORFLOW_TARGET=rpi BUILD_DEB=y docker-build
  • Tensorflow v2.3.0-rc0 version or later
git clone -b v2.3.0-rc0 https://github.com/tensorflow/tensorflow.git
cd tensorflow

sudo CI_DOCKER_EXTRA_PARAMS="-e CUSTOM_BAZEL_FLAGS=--define=tflite_pip_with_flex=true \
  -e CI_BUILD_PYTHON=python3 -e CROSSTOOL_PYTHON_INCLUDE_PATH=/usr/include/python3.7" \
  tensorflow/tools/ci_build/ci_build.sh PI-PYTHON37 \
  tensorflow/lite/tools/pip_package/build_pip_package_with_bazel.sh aarch64

sudo CI_DOCKER_EXTRA_PARAMS="-e CUSTOM_BAZEL_FLAGS=--define=tflite_pip_with_flex=true \
  -e CI_BUILD_PYTHON=python3 -e CROSSTOOL_PYTHON_INCLUDE_PATH=/usr/include/python3.7" \
  tensorflow/tools/ci_build/ci_build.sh PI-PYTHON37 \
  tensorflow/lite/tools/pip_package/build_pip_package_with_bazel.sh armhf

sudo CI_DOCKER_EXTRA_PARAMS="-e CUSTOM_BAZEL_FLAGS=--define=tflite_pip_with_flex=true \
  -e CI_BUILD_PYTHON=python3 -e CROSSTOOL_PYTHON_INCLUDE_PATH=/usr/include/python3.5" \
  tensorflow/tools/ci_build/ci_build.sh PI-PYTHON3 \
  tensorflow/lite/tools/pip_package/build_pip_package_with_bazel.sh aarch64

sudo CI_DOCKER_EXTRA_PARAMS="-e CUSTOM_BAZEL_FLAGS=--define=tflite_pip_with_flex=true \
  -e CI_BUILD_PYTHON=python3 -e CROSSTOOL_PYTHON_INCLUDE_PATH=/usr/include/python3.5" \
  tensorflow/tools/ci_build/ci_build.sh PI-PYTHON3 \
  tensorflow/lite/tools/pip_package/build_pip_package_with_bazel.sh armhf

Operation check 【Classification】

Sample of MultiThread x4 by Tensorflow Lite [MobileNetV1 / 75ms]
01

Sample of MultiThread x4 by Tensorflow Lite [MobileNetV2 / 68ms] 02

  • Environmental preparation
$ cd ~;mkdir test
$ curl https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/lite/examples/label_image/testdata/grace_hopper.bmp > ~/test/grace_hopper.bmp
$ curl https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_1.0_224_frozen.tgz | tar xzv -C ~/test mobilenet_v1_1.0_224/labels.txt
$ mv ~/test/mobilenet_v1_1.0_224/labels.txt ~/test/
$ curl http://download.tensorflow.org/models/mobilenet_v1_2018_02_22/mobilenet_v1_1.0_224_quant.tgz | tar xzv -C ~/test
$ cd ~/test
  • label_image.py
import argparse
import numpy as np
import time

from PIL import Image

from tflite_runtime.interpreter import Interpreter

def load_labels(filename):
  my_labels = []
  input_file = open(filename, 'r')
  for l in input_file:
    my_labels.append(l.strip())
  return my_labels
if __name__ == "__main__":
  floating_model = False
  parser = argparse.ArgumentParser()
  parser.add_argument("-i", "--image", default="/tmp/grace_hopper.bmp", \
    help="image to be classified")
  parser.add_argument("-m", "--model_file", \
    default="/tmp/mobilenet_v1_1.0_224_quant.tflite", \
    help=".tflite model to be executed")
  parser.add_argument("-l", "--label_file", default="/tmp/labels.txt", \
    help="name of file containing labels")
  parser.add_argument("--input_mean", default=127.5, help="input_mean")
  parser.add_argument("--input_std", default=127.5, \
    help="input standard deviation")
  parser.add_argument("--num_threads", default=1, help="number of threads")
  args = parser.parse_args()

  ### Tensorflow -v2.2.0
  interpreter = Interpreter(model_path=args.model_file)
  ### Tensorflow v2.3.0+
  #interpreter = Interpreter(model_path="foo.tflite", num_threads=4)
  interpreter.allocate_tensors()
  input_details = interpreter.get_input_details()
  output_details = interpreter.get_output_details()
  # check the type of the input tensor
  if input_details[0]['dtype'] == np.float32:
    floating_model = True
  # NxHxWxC, H:1, W:2
  height = input_details[0]['shape'][1]
  width = input_details[0]['shape'][2]
  img = Image.open(args.image)
  img = img.resize((width, height))
  # add N dim
  input_data = np.expand_dims(img, axis=0)
  if floating_model:
    input_data = (np.float32(input_data) - args.input_mean) / args.input_std

  ### Tensorflow -v2.2.0
  interpreter.set_num_threads(int(args.num_threads)) #<- Specifies the num of threads assigned to inference
  ### Tensorflow v2.3.0+
  #interpreter.set_num_threads(int(args.num_threads))
  interpreter.set_tensor(input_details[0]['index'], input_data)

  start_time = time.time()
  interpreter.invoke()
  stop_time = time.time()

  output_data = interpreter.get_tensor(output_details[0]['index'])
  results = np.squeeze(output_data)
  top_k = results.argsort()[-5:][::-1]
  labels = load_labels(args.label_file)
  for i in top_k:
    if floating_model:
      print('{0:08.6f}'.format(float(results[i]))+":", labels[i])
    else:
      print('{0:08.6f}'.format(float(results[i]/255.0))+":", labels[i])

  print("time: ", stop_time - start_time)
  • Inference test
$ python3 label_image.py \
--num_threads 4 \
--image grace_hopper.bmp \
--model_file mobilenet_v1_1.0_224_quant.tflite \
--label_file labels.txt

Operation check 【ObjectDetection】

Sample of MultiThread x4 by Tensorflow Lite + Raspbian Buster (armhf) + RaspberryPi3 [MobileNetV2-SSD / 160ms]

03
04

Sample of MultiThread x4 by Tensorflow Lite + Ubuntu18.04 (aarch64) + RaspberryPi3 [MobileNetV2-SSD / 140ms]

06

Inference test

$ python3 mobilenetv2ssd.py

MobileNetV2-SSD (UINT8) + Corei7 CPU only + USB Camera + 10 Threads + Async

05

MobileNetV2-SSDLite (UINT8) + RaspberryPi4 CPU only + USB Camera 640x480 + 4 Threads + Sync + Disp 1080p

07

List of quantized models

https://www.tensorflow.org/lite/guide/hosted_models

Other MobileNetV1 weight files

https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md

Other MobileNetV2 weight files

https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/README.md

Reference

tflite only python package PINTO0309/Tensorflow-bin#15
Incorrect predictions of Mobilenet_V2 tensorflow/tensorflow#31229 (comment)