Issue with ModelGraph function during ONNX model synthesis
sei-rquartiano opened this issue · 4 comments
On up-to-date main branch, running from within this docker image
Attempting to synthesize hls from ONNX model. First, I ran python code from README.md to convert Keras model without error. Then I modified the script to convert from ONNX instead (see below)
import hls4ml
# Fetch a keras model from our example repository
# This will download our example model to your working directory and return an example configuration file
config = hls4ml.utils.fetch_example_model('three_layer_keras.onnx')
# You can print the configuration to see some default parameters
print(config)
# Convert it to a hls project
hls_model = hls4ml.converters.onnx_to_hls(config)
#hls_model.build(csim=False)
# Print full list of example models if you want to explore more
hls4ml.utils.fetch_example_list()
When I run the above code, I get the following output and subsequent error message during synthesis
2024-03-18 17:48:46.474669: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2024-03-18 17:48:47.242971: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2024-03-18 17:48:47.243534: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-03-18 17:48:49.843563: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
Downloading example model files ...
{'OutputDir': 'my-hls-test', 'ProjectName': 'myproject', 'Backend': 'Vivado', 'Version': '1.0.0', 'Part': 'xcvu13p-flga2577-2-e', 'ClockPeriod': 5, 'IOType': 'io_parallel', 'HLSConfig': {'Model': {'Precision': 'ap_fixed<16,6>', 'ReuseFactor': 1}}, 'OnnxModel': 'three_layer_keras.onnx'}
Interpreting Model ...
Output layers: ['Softmax']
Input shape: [None, 16]
Topology:
Layer name: _class__keras_layers_core_Dense__, layer type: Dense, current shape: [[None, 16]]
Layer name: Add, layer type: Add, current shape: [[None, 64]]
Layer name: Relu, layer type: Activation, current shape: [[None, 64]]
Layer name: _class__keras_layers_core_Dense__1, layer type: Dense, current shape: [[None, 64]]
Layer name: Add1, layer type: Add, current shape: [[None, 32]]
Layer name: Relu1, layer type: Activation, current shape: [[None, 32]]
Layer name: _class__keras_layers_core_Dense__2, layer type: Dense, current shape: [[None, 32]]
Layer name: Add2, layer type: Add, current shape: [[None, 32]]
Layer name: Relu2, layer type: Activation, current shape: [[None, 32]]
Layer name: _class__keras_layers_core_Dense__3, layer type: Dense, current shape: [[None, 32]]
Layer name: Add3, layer type: Add, current shape: [[None, 5]]
Layer name: Softmax, layer type: Softmax, current shape: [[None, 5]]
Creating HLS model
Traceback (most recent call last):
File "/home/hls4ml-user/work/hls4ml/example_script.py", line 11, in <module>
hls_model = hls4ml.converters.onnx_to_hls(config)
File "/home/hls4ml-user/work/hls4ml/hls4ml/converters/onnx_to_hls.py", line 318, in onnx_to_hls
hls_model = ModelGraph(config, reader, layer_list, input_layers, output_layers)
TypeError: ModelGraph.__init__() takes from 3 to 5 positional arguments but 6 were given
I originally encountered this error in a different and more complex project, but reproduced it in hls4ml's example code to facilitate debugging
Thank you!
The current ONNX parser is broken in many ways, it is going to be updated soon. You can try out the development version in #979
@vloncar what is the expectation on the tests in #979 ? I get
= 58 failed, 1280 passed, 6 skipped, 649 warnings, 8 errors in 3587.97s (0:59:47) =
In particular test_qonnx.py
does not pass.
(hls4ml) hls4ml-user@lx-pinkbird:~/hls4ml/test/pytest$ python -m pytest test_qonnx.py
============================= test session starts ==============================
platform linux -- Python 3.10.14, pytest-8.1.1, pluggy-1.4.0
rootdir: /home/hls4ml-user/hls4ml
configfile: pyproject.toml
collected 9 items
test_qonnx.py EEEEEEFFF [100%]
==================================== ERRORS ====================================
___________________ ERROR at setup of test_tfc_2w2a[Vivado] ____________________
@pytest.fixture(scope='module')
def tfc_2w2a_model():
'''
Load the tiny fully-connected model
'''
dl_dir = test_root_path
dl_file = str(dl_dir / "qonnx-tfc-2w2a.onnx")
tfc_w2a2_qonnx_url = (
"https://raw.githubusercontent.com/fastmachinelearning/"
"QONNX_model_zoo/main/models/MNIST/Brevitas_FINN_TFC/TFC/TFC_2W2A.onnx"
)
urllib.request.urlretrieve(tfc_w2a2_qonnx_url, dl_file)
assert os.path.isfile(dl_file)
out_file = str(dl_dir / "qonnx-tfc-2w2a-clean.onnx")
# cleanup
> qonnx.util.cleanup.cleanup(dl_file, out_file=out_file)
test_qonnx.py:35:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/util/cleanup.py:66: in cleanup
model = cleanup_model(model, preserve_qnt_ops=preserve_qnt_ops, override_batchsize=override_batchsize)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/util/cleanup.py:46: in cleanup_model
model = model.transform(t)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/core/modelwrapper.py:140: in transform
(transformed_model, model_was_changed) = transformation.apply(transformed_model)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/transformation/fold_constants.py:108: in apply
oxe.execute_node(n, execution_context, model.graph, opset_version=opset_version)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/core/onnx_exec.py:87: in execute_node
sess = rt.InferenceSession(node_model.SerializeToString())
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <onnxruntime.capi.onnxruntime_inference_collection.InferenceSession object at 0x7ff2b2cd78b0>
providers = [], provider_options = [], disabled_optimizers = None
def _create_inference_session(self, providers, provider_options, disabled_optimizers=None):
available_providers = C.get_available_providers()
# Tensorrt can fall back to CUDA if it's explicitly assigned. All others fall back to CPU.
if "TensorrtExecutionProvider" in available_providers:
if providers and any(
provider == "CUDAExecutionProvider"
or (isinstance(provider, tuple) and provider[0] == "CUDAExecutionProvider")
for provider in providers
):
self._fallback_providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
# MIGraphX can fall back to ROCM if it's explicitly assigned. All others fall back to CPU.
elif "MIGraphXExecutionProvider" in available_providers:
if providers and any(
provider == "ROCMExecutionProvider"
or (isinstance(provider, tuple) and provider[0] == "ROCMExecutionProvider")
for provider in providers
):
self._fallback_providers = ["ROCMExecutionProvider", "CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
# validate providers and provider_options before other initialization
providers, provider_options = check_and_normalize_provider_args(
providers, provider_options, available_providers
)
session_options = self._sess_options if self._sess_options else C.get_default_session_options()
self._register_ep_custom_ops(session_options, providers, provider_options, available_providers)
if self._model_path:
sess = C.InferenceSession(session_options, self._model_path, True, self._read_config_from_model)
else:
> sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeError] : 2 : INVALID_ARGUMENT : Failed to load model with error: /onnxruntime_src/onnxruntime/core/graph/model.cc:179 onnxruntime::Model::Model(onnx::ModelProto&&, const onnxruntime::PathString&, const onnxruntime::IOnnxRuntimeOpSchemaRegistryList*, const onnxruntime::logging::Logger&, const onnxruntime::ModelOptions&) Unsupported model IR version: 10, max supported IR version: 9
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: InvalidArgument
____________________ ERROR at setup of test_tfc_2w2a[Vitis] ____________________
@pytest.fixture(scope='module')
def tfc_2w2a_model():
'''
Load the tiny fully-connected model
'''
dl_dir = test_root_path
dl_file = str(dl_dir / "qonnx-tfc-2w2a.onnx")
tfc_w2a2_qonnx_url = (
"https://raw.githubusercontent.com/fastmachinelearning/"
"QONNX_model_zoo/main/models/MNIST/Brevitas_FINN_TFC/TFC/TFC_2W2A.onnx"
)
urllib.request.urlretrieve(tfc_w2a2_qonnx_url, dl_file)
assert os.path.isfile(dl_file)
out_file = str(dl_dir / "qonnx-tfc-2w2a-clean.onnx")
# cleanup
> qonnx.util.cleanup.cleanup(dl_file, out_file=out_file)
test_qonnx.py:35:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/util/cleanup.py:66: in cleanup
model = cleanup_model(model, preserve_qnt_ops=preserve_qnt_ops, override_batchsize=override_batchsize)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/util/cleanup.py:46: in cleanup_model
model = model.transform(t)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/core/modelwrapper.py:140: in transform
(transformed_model, model_was_changed) = transformation.apply(transformed_model)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/transformation/fold_constants.py:108: in apply
oxe.execute_node(n, execution_context, model.graph, opset_version=opset_version)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/core/onnx_exec.py:87: in execute_node
sess = rt.InferenceSession(node_model.SerializeToString())
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <onnxruntime.capi.onnxruntime_inference_collection.InferenceSession object at 0x7ff2b2cd78b0>
providers = [], provider_options = [], disabled_optimizers = None
def _create_inference_session(self, providers, provider_options, disabled_optimizers=None):
available_providers = C.get_available_providers()
# Tensorrt can fall back to CUDA if it's explicitly assigned. All others fall back to CPU.
if "TensorrtExecutionProvider" in available_providers:
if providers and any(
provider == "CUDAExecutionProvider"
or (isinstance(provider, tuple) and provider[0] == "CUDAExecutionProvider")
for provider in providers
):
self._fallback_providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
# MIGraphX can fall back to ROCM if it's explicitly assigned. All others fall back to CPU.
elif "MIGraphXExecutionProvider" in available_providers:
if providers and any(
provider == "ROCMExecutionProvider"
or (isinstance(provider, tuple) and provider[0] == "ROCMExecutionProvider")
for provider in providers
):
self._fallback_providers = ["ROCMExecutionProvider", "CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
# validate providers and provider_options before other initialization
providers, provider_options = check_and_normalize_provider_args(
providers, provider_options, available_providers
)
session_options = self._sess_options if self._sess_options else C.get_default_session_options()
self._register_ep_custom_ops(session_options, providers, provider_options, available_providers)
if self._model_path:
sess = C.InferenceSession(session_options, self._model_path, True, self._read_config_from_model)
else:
> sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeError] : 2 : INVALID_ARGUMENT : Failed to load model with error: /onnxruntime_src/onnxruntime/core/graph/model.cc:179 onnxruntime::Model::Model(onnx::ModelProto&&, const onnxruntime::PathString&, const onnxruntime::IOnnxRuntimeOpSchemaRegistryList*, const onnxruntime::logging::Logger&, const onnxruntime::ModelOptions&) Unsupported model IR version: 10, max supported IR version: 9
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: InvalidArgument
___________________ ERROR at setup of test_tfc_2w2a[Quartus] ___________________
@pytest.fixture(scope='module')
def tfc_2w2a_model():
'''
Load the tiny fully-connected model
'''
dl_dir = test_root_path
dl_file = str(dl_dir / "qonnx-tfc-2w2a.onnx")
tfc_w2a2_qonnx_url = (
"https://raw.githubusercontent.com/fastmachinelearning/"
"QONNX_model_zoo/main/models/MNIST/Brevitas_FINN_TFC/TFC/TFC_2W2A.onnx"
)
urllib.request.urlretrieve(tfc_w2a2_qonnx_url, dl_file)
assert os.path.isfile(dl_file)
out_file = str(dl_dir / "qonnx-tfc-2w2a-clean.onnx")
# cleanup
> qonnx.util.cleanup.cleanup(dl_file, out_file=out_file)
test_qonnx.py:35:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/util/cleanup.py:66: in cleanup
model = cleanup_model(model, preserve_qnt_ops=preserve_qnt_ops, override_batchsize=override_batchsize)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/util/cleanup.py:46: in cleanup_model
model = model.transform(t)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/core/modelwrapper.py:140: in transform
(transformed_model, model_was_changed) = transformation.apply(transformed_model)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/transformation/fold_constants.py:108: in apply
oxe.execute_node(n, execution_context, model.graph, opset_version=opset_version)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/core/onnx_exec.py:87: in execute_node
sess = rt.InferenceSession(node_model.SerializeToString())
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <onnxruntime.capi.onnxruntime_inference_collection.InferenceSession object at 0x7ff2b2cd78b0>
providers = [], provider_options = [], disabled_optimizers = None
def _create_inference_session(self, providers, provider_options, disabled_optimizers=None):
available_providers = C.get_available_providers()
# Tensorrt can fall back to CUDA if it's explicitly assigned. All others fall back to CPU.
if "TensorrtExecutionProvider" in available_providers:
if providers and any(
provider == "CUDAExecutionProvider"
or (isinstance(provider, tuple) and provider[0] == "CUDAExecutionProvider")
for provider in providers
):
self._fallback_providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
# MIGraphX can fall back to ROCM if it's explicitly assigned. All others fall back to CPU.
elif "MIGraphXExecutionProvider" in available_providers:
if providers and any(
provider == "ROCMExecutionProvider"
or (isinstance(provider, tuple) and provider[0] == "ROCMExecutionProvider")
for provider in providers
):
self._fallback_providers = ["ROCMExecutionProvider", "CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
# validate providers and provider_options before other initialization
providers, provider_options = check_and_normalize_provider_args(
providers, provider_options, available_providers
)
session_options = self._sess_options if self._sess_options else C.get_default_session_options()
self._register_ep_custom_ops(session_options, providers, provider_options, available_providers)
if self._model_path:
sess = C.InferenceSession(session_options, self._model_path, True, self._read_config_from_model)
else:
> sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeError] : 2 : INVALID_ARGUMENT : Failed to load model with error: /onnxruntime_src/onnxruntime/core/graph/model.cc:179 onnxruntime::Model::Model(onnx::ModelProto&&, const onnxruntime::PathString&, const onnxruntime::IOnnxRuntimeOpSchemaRegistryList*, const onnxruntime::logging::Logger&, const onnxruntime::ModelOptions&) Unsupported model IR version: 10, max supported IR version: 9
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: InvalidArgument
___________________ ERROR at setup of test_cnv_2w2a[Vivado] ____________________
@pytest.fixture(scope='module')
def cnv_2w2a_model():
'''
Load the small convolution model
'''
dl_dir = test_root_path
dl_file = str(dl_dir / "qonnx-cnv-2w2a.onnx")
cnv_w2a2_qonnx_url = (
"https://raw.githubusercontent.com/fastmachinelearning/"
"QONNX_model_zoo/main/models/CIFAR10/Brevitas_FINN_CNV/CNV_2W2A.onnx"
)
urllib.request.urlretrieve(cnv_w2a2_qonnx_url, dl_file)
assert os.path.isfile(dl_file)
out_clean = str(dl_dir / "qonnx-cnv-2w2a-clean.onnx")
out_chanlast = str(dl_dir / "qonnx-cnv-2w2a-clean-channels-last.onnx")
out_file = str(dl_dir / "qonnx-cnv-2w2a-clean-channels-last-clean.onnx")
# cleanup
> qonnx.util.cleanup.cleanup(dl_file, out_file=out_clean)
test_qonnx.py:58:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/util/cleanup.py:66: in cleanup
model = cleanup_model(model, preserve_qnt_ops=preserve_qnt_ops, override_batchsize=override_batchsize)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/util/cleanup.py:46: in cleanup_model
model = model.transform(t)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/core/modelwrapper.py:140: in transform
(transformed_model, model_was_changed) = transformation.apply(transformed_model)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/transformation/fold_constants.py:108: in apply
oxe.execute_node(n, execution_context, model.graph, opset_version=opset_version)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/core/onnx_exec.py:87: in execute_node
sess = rt.InferenceSession(node_model.SerializeToString())
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <onnxruntime.capi.onnxruntime_inference_collection.InferenceSession object at 0x7ff2b0b907f0>
providers = [], provider_options = [], disabled_optimizers = None
def _create_inference_session(self, providers, provider_options, disabled_optimizers=None):
available_providers = C.get_available_providers()
# Tensorrt can fall back to CUDA if it's explicitly assigned. All others fall back to CPU.
if "TensorrtExecutionProvider" in available_providers:
if providers and any(
provider == "CUDAExecutionProvider"
or (isinstance(provider, tuple) and provider[0] == "CUDAExecutionProvider")
for provider in providers
):
self._fallback_providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
# MIGraphX can fall back to ROCM if it's explicitly assigned. All others fall back to CPU.
elif "MIGraphXExecutionProvider" in available_providers:
if providers and any(
provider == "ROCMExecutionProvider"
or (isinstance(provider, tuple) and provider[0] == "ROCMExecutionProvider")
for provider in providers
):
self._fallback_providers = ["ROCMExecutionProvider", "CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
# validate providers and provider_options before other initialization
providers, provider_options = check_and_normalize_provider_args(
providers, provider_options, available_providers
)
session_options = self._sess_options if self._sess_options else C.get_default_session_options()
self._register_ep_custom_ops(session_options, providers, provider_options, available_providers)
if self._model_path:
sess = C.InferenceSession(session_options, self._model_path, True, self._read_config_from_model)
else:
> sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeError] : 2 : INVALID_ARGUMENT : Failed to load model with error: /onnxruntime_src/onnxruntime/core/graph/model.cc:179 onnxruntime::Model::Model(onnx::ModelProto&&, const onnxruntime::PathString&, const onnxruntime::IOnnxRuntimeOpSchemaRegistryList*, const onnxruntime::logging::Logger&, const onnxruntime::ModelOptions&) Unsupported model IR version: 10, max supported IR version: 9
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: InvalidArgument
____________________ ERROR at setup of test_cnv_2w2a[Vitis] ____________________
@pytest.fixture(scope='module')
def cnv_2w2a_model():
'''
Load the small convolution model
'''
dl_dir = test_root_path
dl_file = str(dl_dir / "qonnx-cnv-2w2a.onnx")
cnv_w2a2_qonnx_url = (
"https://raw.githubusercontent.com/fastmachinelearning/"
"QONNX_model_zoo/main/models/CIFAR10/Brevitas_FINN_CNV/CNV_2W2A.onnx"
)
urllib.request.urlretrieve(cnv_w2a2_qonnx_url, dl_file)
assert os.path.isfile(dl_file)
out_clean = str(dl_dir / "qonnx-cnv-2w2a-clean.onnx")
out_chanlast = str(dl_dir / "qonnx-cnv-2w2a-clean-channels-last.onnx")
out_file = str(dl_dir / "qonnx-cnv-2w2a-clean-channels-last-clean.onnx")
# cleanup
> qonnx.util.cleanup.cleanup(dl_file, out_file=out_clean)
test_qonnx.py:58:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/util/cleanup.py:66: in cleanup
model = cleanup_model(model, preserve_qnt_ops=preserve_qnt_ops, override_batchsize=override_batchsize)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/util/cleanup.py:46: in cleanup_model
model = model.transform(t)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/core/modelwrapper.py:140: in transform
(transformed_model, model_was_changed) = transformation.apply(transformed_model)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/transformation/fold_constants.py:108: in apply
oxe.execute_node(n, execution_context, model.graph, opset_version=opset_version)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/core/onnx_exec.py:87: in execute_node
sess = rt.InferenceSession(node_model.SerializeToString())
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <onnxruntime.capi.onnxruntime_inference_collection.InferenceSession object at 0x7ff2b0b907f0>
providers = [], provider_options = [], disabled_optimizers = None
def _create_inference_session(self, providers, provider_options, disabled_optimizers=None):
available_providers = C.get_available_providers()
# Tensorrt can fall back to CUDA if it's explicitly assigned. All others fall back to CPU.
if "TensorrtExecutionProvider" in available_providers:
if providers and any(
provider == "CUDAExecutionProvider"
or (isinstance(provider, tuple) and provider[0] == "CUDAExecutionProvider")
for provider in providers
):
self._fallback_providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
# MIGraphX can fall back to ROCM if it's explicitly assigned. All others fall back to CPU.
elif "MIGraphXExecutionProvider" in available_providers:
if providers and any(
provider == "ROCMExecutionProvider"
or (isinstance(provider, tuple) and provider[0] == "ROCMExecutionProvider")
for provider in providers
):
self._fallback_providers = ["ROCMExecutionProvider", "CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
# validate providers and provider_options before other initialization
providers, provider_options = check_and_normalize_provider_args(
providers, provider_options, available_providers
)
session_options = self._sess_options if self._sess_options else C.get_default_session_options()
self._register_ep_custom_ops(session_options, providers, provider_options, available_providers)
if self._model_path:
sess = C.InferenceSession(session_options, self._model_path, True, self._read_config_from_model)
else:
> sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeError] : 2 : INVALID_ARGUMENT : Failed to load model with error: /onnxruntime_src/onnxruntime/core/graph/model.cc:179 onnxruntime::Model::Model(onnx::ModelProto&&, const onnxruntime::PathString&, const onnxruntime::IOnnxRuntimeOpSchemaRegistryList*, const onnxruntime::logging::Logger&, const onnxruntime::ModelOptions&) Unsupported model IR version: 10, max supported IR version: 9
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: InvalidArgument
___________________ ERROR at setup of test_cnv_2w2a[Quartus] ___________________
@pytest.fixture(scope='module')
def cnv_2w2a_model():
'''
Load the small convolution model
'''
dl_dir = test_root_path
dl_file = str(dl_dir / "qonnx-cnv-2w2a.onnx")
cnv_w2a2_qonnx_url = (
"https://raw.githubusercontent.com/fastmachinelearning/"
"QONNX_model_zoo/main/models/CIFAR10/Brevitas_FINN_CNV/CNV_2W2A.onnx"
)
urllib.request.urlretrieve(cnv_w2a2_qonnx_url, dl_file)
assert os.path.isfile(dl_file)
out_clean = str(dl_dir / "qonnx-cnv-2w2a-clean.onnx")
out_chanlast = str(dl_dir / "qonnx-cnv-2w2a-clean-channels-last.onnx")
out_file = str(dl_dir / "qonnx-cnv-2w2a-clean-channels-last-clean.onnx")
# cleanup
> qonnx.util.cleanup.cleanup(dl_file, out_file=out_clean)
test_qonnx.py:58:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/util/cleanup.py:66: in cleanup
model = cleanup_model(model, preserve_qnt_ops=preserve_qnt_ops, override_batchsize=override_batchsize)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/util/cleanup.py:46: in cleanup_model
model = model.transform(t)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/core/modelwrapper.py:140: in transform
(transformed_model, model_was_changed) = transformation.apply(transformed_model)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/transformation/fold_constants.py:108: in apply
oxe.execute_node(n, execution_context, model.graph, opset_version=opset_version)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/core/onnx_exec.py:87: in execute_node
sess = rt.InferenceSession(node_model.SerializeToString())
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <onnxruntime.capi.onnxruntime_inference_collection.InferenceSession object at 0x7ff2b0b907f0>
providers = [], provider_options = [], disabled_optimizers = None
def _create_inference_session(self, providers, provider_options, disabled_optimizers=None):
available_providers = C.get_available_providers()
# Tensorrt can fall back to CUDA if it's explicitly assigned. All others fall back to CPU.
if "TensorrtExecutionProvider" in available_providers:
if providers and any(
provider == "CUDAExecutionProvider"
or (isinstance(provider, tuple) and provider[0] == "CUDAExecutionProvider")
for provider in providers
):
self._fallback_providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
# MIGraphX can fall back to ROCM if it's explicitly assigned. All others fall back to CPU.
elif "MIGraphXExecutionProvider" in available_providers:
if providers and any(
provider == "ROCMExecutionProvider"
or (isinstance(provider, tuple) and provider[0] == "ROCMExecutionProvider")
for provider in providers
):
self._fallback_providers = ["ROCMExecutionProvider", "CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
# validate providers and provider_options before other initialization
providers, provider_options = check_and_normalize_provider_args(
providers, provider_options, available_providers
)
session_options = self._sess_options if self._sess_options else C.get_default_session_options()
self._register_ep_custom_ops(session_options, providers, provider_options, available_providers)
if self._model_path:
sess = C.InferenceSession(session_options, self._model_path, True, self._read_config_from_model)
else:
> sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeError] : 2 : INVALID_ARGUMENT : Failed to load model with error: /onnxruntime_src/onnxruntime/core/graph/model.cc:179 onnxruntime::Model::Model(onnx::ModelProto&&, const onnxruntime::PathString&, const onnxruntime::IOnnxRuntimeOpSchemaRegistryList*, const onnxruntime::logging::Logger&, const onnxruntime::ModelOptions&) Unsupported model IR version: 10, max supported IR version: 9
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: InvalidArgument
=================================== FAILURES ===================================
___________________________ test_jet_tagging[Vivado] ___________________________
jettagging_model = <qonnx.core.modelwrapper.ModelWrapper object at 0x7ff2b09deb30>
backend = 'Vivado'
@pytest.mark.parametrize('backend', ['Vivado', 'Vitis', 'Quartus'])
def test_jet_tagging(jettagging_model, backend):
model = jettagging_model
# Execute QONNX model inference
# TODO make the test bigger
ishape = (1, 16)
X = np.random.uniform(low=-1, high=+1, size=np.prod(ishape)).reshape(ishape)
X = (np.round(X * 2**16) * 2**-16).astype(np.float32)
idict = {model.graph.input[0].name: X}
> y_qonnx = oxe.execute_onnx(model, idict)[model.graph.output[0].name]
test_qonnx.py:147:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/core/onnx_exec.py:179: in execute_onnx
execute_node(node, execution_context, graph, return_full_exec_context, opset_version)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/core/onnx_exec.py:87: in execute_node
sess = rt.InferenceSession(node_model.SerializeToString())
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <onnxruntime.capi.onnxruntime_inference_collection.InferenceSession object at 0x7ff2b09dde70>
providers = [], provider_options = [], disabled_optimizers = None
def _create_inference_session(self, providers, provider_options, disabled_optimizers=None):
available_providers = C.get_available_providers()
# Tensorrt can fall back to CUDA if it's explicitly assigned. All others fall back to CPU.
if "TensorrtExecutionProvider" in available_providers:
if providers and any(
provider == "CUDAExecutionProvider"
or (isinstance(provider, tuple) and provider[0] == "CUDAExecutionProvider")
for provider in providers
):
self._fallback_providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
# MIGraphX can fall back to ROCM if it's explicitly assigned. All others fall back to CPU.
elif "MIGraphXExecutionProvider" in available_providers:
if providers and any(
provider == "ROCMExecutionProvider"
or (isinstance(provider, tuple) and provider[0] == "ROCMExecutionProvider")
for provider in providers
):
self._fallback_providers = ["ROCMExecutionProvider", "CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
# validate providers and provider_options before other initialization
providers, provider_options = check_and_normalize_provider_args(
providers, provider_options, available_providers
)
session_options = self._sess_options if self._sess_options else C.get_default_session_options()
self._register_ep_custom_ops(session_options, providers, provider_options, available_providers)
if self._model_path:
sess = C.InferenceSession(session_options, self._model_path, True, self._read_config_from_model)
else:
> sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeError] : 2 : INVALID_ARGUMENT : Failed to load model with error: /onnxruntime_src/onnxruntime/core/graph/model.cc:179 onnxruntime::Model::Model(onnx::ModelProto&&, const onnxruntime::PathString&, const onnxruntime::IOnnxRuntimeOpSchemaRegistryList*, const onnxruntime::logging::Logger&, const onnxruntime::ModelOptions&) Unsupported model IR version: 10, max supported IR version: 9
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: InvalidArgument
___________________________ test_jet_tagging[Vitis] ____________________________
jettagging_model = <qonnx.core.modelwrapper.ModelWrapper object at 0x7ff2b09deb30>
backend = 'Vitis'
@pytest.mark.parametrize('backend', ['Vivado', 'Vitis', 'Quartus'])
def test_jet_tagging(jettagging_model, backend):
model = jettagging_model
# Execute QONNX model inference
# TODO make the test bigger
ishape = (1, 16)
X = np.random.uniform(low=-1, high=+1, size=np.prod(ishape)).reshape(ishape)
X = (np.round(X * 2**16) * 2**-16).astype(np.float32)
idict = {model.graph.input[0].name: X}
> y_qonnx = oxe.execute_onnx(model, idict)[model.graph.output[0].name]
test_qonnx.py:147:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/core/onnx_exec.py:179: in execute_onnx
execute_node(node, execution_context, graph, return_full_exec_context, opset_version)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/core/onnx_exec.py:87: in execute_node
sess = rt.InferenceSession(node_model.SerializeToString())
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <onnxruntime.capi.onnxruntime_inference_collection.InferenceSession object at 0x7ff2b0c20c40>
providers = [], provider_options = [], disabled_optimizers = None
def _create_inference_session(self, providers, provider_options, disabled_optimizers=None):
available_providers = C.get_available_providers()
# Tensorrt can fall back to CUDA if it's explicitly assigned. All others fall back to CPU.
if "TensorrtExecutionProvider" in available_providers:
if providers and any(
provider == "CUDAExecutionProvider"
or (isinstance(provider, tuple) and provider[0] == "CUDAExecutionProvider")
for provider in providers
):
self._fallback_providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
# MIGraphX can fall back to ROCM if it's explicitly assigned. All others fall back to CPU.
elif "MIGraphXExecutionProvider" in available_providers:
if providers and any(
provider == "ROCMExecutionProvider"
or (isinstance(provider, tuple) and provider[0] == "ROCMExecutionProvider")
for provider in providers
):
self._fallback_providers = ["ROCMExecutionProvider", "CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
# validate providers and provider_options before other initialization
providers, provider_options = check_and_normalize_provider_args(
providers, provider_options, available_providers
)
session_options = self._sess_options if self._sess_options else C.get_default_session_options()
self._register_ep_custom_ops(session_options, providers, provider_options, available_providers)
if self._model_path:
sess = C.InferenceSession(session_options, self._model_path, True, self._read_config_from_model)
else:
> sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeError] : 2 : INVALID_ARGUMENT : Failed to load model with error: /onnxruntime_src/onnxruntime/core/graph/model.cc:179 onnxruntime::Model::Model(onnx::ModelProto&&, const onnxruntime::PathString&, const onnxruntime::IOnnxRuntimeOpSchemaRegistryList*, const onnxruntime::logging::Logger&, const onnxruntime::ModelOptions&) Unsupported model IR version: 10, max supported IR version: 9
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: InvalidArgument
__________________________ test_jet_tagging[Quartus] ___________________________
jettagging_model = <qonnx.core.modelwrapper.ModelWrapper object at 0x7ff2b09deb30>
backend = 'Quartus'
@pytest.mark.parametrize('backend', ['Vivado', 'Vitis', 'Quartus'])
def test_jet_tagging(jettagging_model, backend):
model = jettagging_model
# Execute QONNX model inference
# TODO make the test bigger
ishape = (1, 16)
X = np.random.uniform(low=-1, high=+1, size=np.prod(ishape)).reshape(ishape)
X = (np.round(X * 2**16) * 2**-16).astype(np.float32)
idict = {model.graph.input[0].name: X}
> y_qonnx = oxe.execute_onnx(model, idict)[model.graph.output[0].name]
test_qonnx.py:147:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/core/onnx_exec.py:179: in execute_onnx
execute_node(node, execution_context, graph, return_full_exec_context, opset_version)
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/core/onnx_exec.py:87: in execute_node
sess = rt.InferenceSession(node_model.SerializeToString())
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <onnxruntime.capi.onnxruntime_inference_collection.InferenceSession object at 0x7ff2b09fc310>
providers = [], provider_options = [], disabled_optimizers = None
def _create_inference_session(self, providers, provider_options, disabled_optimizers=None):
available_providers = C.get_available_providers()
# Tensorrt can fall back to CUDA if it's explicitly assigned. All others fall back to CPU.
if "TensorrtExecutionProvider" in available_providers:
if providers and any(
provider == "CUDAExecutionProvider"
or (isinstance(provider, tuple) and provider[0] == "CUDAExecutionProvider")
for provider in providers
):
self._fallback_providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
# MIGraphX can fall back to ROCM if it's explicitly assigned. All others fall back to CPU.
elif "MIGraphXExecutionProvider" in available_providers:
if providers and any(
provider == "ROCMExecutionProvider"
or (isinstance(provider, tuple) and provider[0] == "ROCMExecutionProvider")
for provider in providers
):
self._fallback_providers = ["ROCMExecutionProvider", "CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
else:
self._fallback_providers = ["CPUExecutionProvider"]
# validate providers and provider_options before other initialization
providers, provider_options = check_and_normalize_provider_args(
providers, provider_options, available_providers
)
session_options = self._sess_options if self._sess_options else C.get_default_session_options()
self._register_ep_custom_ops(session_options, providers, provider_options, available_providers)
if self._model_path:
sess = C.InferenceSession(session_options, self._model_path, True, self._read_config_from_model)
else:
> sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeError] : 2 : INVALID_ARGUMENT : Failed to load model with error: /onnxruntime_src/onnxruntime/core/graph/model.cc:179 onnxruntime::Model::Model(onnx::ModelProto&&, const onnxruntime::PathString&, const onnxruntime::IOnnxRuntimeOpSchemaRegistryList*, const onnxruntime::logging::Logger&, const onnxruntime::ModelOptions&) Unsupported model IR version: 10, max supported IR version: 9
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: InvalidArgument
=============================== warnings summary ===============================
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/tensorflow_model_optimization/__init__.py:65
/home/hls4ml-user/miniconda3/envs/hls4ml/lib/python3.10/site-packages/tensorflow_model_optimization/__init__.py:65: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
if (distutils.version.LooseVersion(tf.version.VERSION) <
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/tensorflow_model_optimization/__init__.py:66
/home/hls4ml-user/miniconda3/envs/hls4ml/lib/python3.10/site-packages/tensorflow_model_optimization/__init__.py:66: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
distutils.version.LooseVersion(required_tensorflow_version)):
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/calmjs/parse/utils.py:13
/home/hls4ml-user/miniconda3/envs/hls4ml/lib/python3.10/site-packages/calmjs/parse/utils.py:13: DeprecationWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html
from pkg_resources import working_set
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/pkg_resources/__init__.py:2871
/home/hls4ml-user/miniconda3/envs/hls4ml/lib/python3.10/site-packages/pkg_resources/__init__.py:2871: DeprecationWarning: Deprecated call to `pkg_resources.declare_namespace('calmjs')`.
Implementing implicit namespace packages (as specified in PEP 420) is preferred to `pkg_resources.declare_namespace`. See https://setuptools.pypa.io/en/latest/references/keywords.html#keyword-namespace-packages
declare_namespace(pkg)
test/pytest/test_qonnx.py: 498 warnings
/home/hls4ml-user/miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/util/onnx.py:40: DeprecationWarning: `mapping.TENSOR_TYPE_TO_NP_TYPE` is now deprecated and will be removed in a future release.To silence this warning, please use `helper.tensor_dtype_to_np_dtype` instead.
return np.zeros(dims, dtype=onnx.mapping.TENSOR_TYPE_TO_NP_TYPE[vi.type.tensor_type.elem_type])
test/pytest/test_qonnx.py::test_jet_tagging[Vivado]
/home/hls4ml-user/miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/core/modelwrapper.py:93: UserWarning: Some old-style domain attributes were automatically converted to new-style,
i.e. domain=finn to domain=qonnx.custom_op.<general|fpgadataflow|...>
warnings.warn(
-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
=========================== short test summary info ============================
FAILED test_qonnx.py::test_jet_tagging[Vivado] - onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeEr...
FAILED test_qonnx.py::test_jet_tagging[Vitis] - onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeEr...
FAILED test_qonnx.py::test_jet_tagging[Quartus] - onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeEr...
ERROR test_qonnx.py::test_tfc_2w2a[Vivado] - onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeEr...
ERROR test_qonnx.py::test_tfc_2w2a[Vitis] - onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeEr...
ERROR test_qonnx.py::test_tfc_2w2a[Quartus] - onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeEr...
ERROR test_qonnx.py::test_cnv_2w2a[Vivado] - onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeEr...
ERROR test_qonnx.py::test_cnv_2w2a[Vitis] - onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeEr...
ERROR test_qonnx.py::test_cnv_2w2a[Quartus] - onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeEr...
================== 3 failed, 503 warnings, 6 errors in 5.61s ===================
Installing onnx==1.15
and onnxruntime==1.17
seems to have cleared those onnxruntime
errors.
After clearing that issue, I do get one failure in test_qonnx.py
, seen below.
(hls4ml) hls4ml-user@lx-pinkbird:~/hls4ml/test/pytest$ python -m pytest test_qonnx.py
============================= test session starts ==============================
platform linux -- Python 3.10.14, pytest-8.1.1, pluggy-1.4.0
rootdir: /home/hls4ml-user/hls4ml
configfile: pyproject.toml
collected 9 items
test_qonnx.py .....F... [100%]
=================================== FAILURES ===================================
____________________________ test_cnv_2w2a[Quartus] ____________________________
cnv_2w2a_model = <qonnx.core.modelwrapper.ModelWrapper object at 0x7fce0ad28c70>
backend = 'Quartus'
@pytest.mark.parametrize('backend', ['Vivado', 'Vitis', 'Quartus'])
def test_cnv_2w2a(cnv_2w2a_model, backend):
"""
This tests a convolution model. Note: the batch normalizations weights not quantized, so it
is difficult to make this match perfectly. It is also a slow test.
"""
model = cnv_2w2a_model
ishape = (1, 32, 32, 3)
X = np.random.uniform(low=-1, high=+1, size=np.prod(ishape)).reshape(ishape)
X = (np.round(X * 2**6) * 2**-6).astype(np.float32)
idict = {model.graph.input[0].name: X}
y_qonnx = oxe.execute_onnx(model, idict)[model.graph.output[0].name]
# Convert QONNX model, compile, and run inference
config = hls4ml.utils.config_from_onnx_model(model, backend=backend, default_precision='fixed<32,6>')
hls_model = hls4ml.converters.convert_from_onnx_model(
model,
output_dir=str(test_root_path / f'hls4mlprj_qonnx_cnv-2w2a_{backend}'),
io_type='io_stream',
backend=backend,
hls_config=config,
)
> hls_model.compile()
test_qonnx.py:131:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/hls4ml/model/graph.py:672: in compile
self._compile()
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/hls4ml/model/graph.py:691: in _compile
self._top_function_lib = ctypes.cdll.LoadLibrary(lib_name)
../../../miniconda3/envs/hls4ml/lib/python3.10/ctypes/__init__.py:452: in LoadLibrary
return self._dlltype(name)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <CDLL '/home/hls4ml-user/hls4ml/test/pytest/hls4mlprj_qonnx_cnv-2w2a_Quartus/firmware/myproject-D9B7bA7c.so', handle 0 at 0x7fce0a534f40>
name = '/home/hls4ml-user/hls4ml/test/pytest/hls4mlprj_qonnx_cnv-2w2a_Quartus/firmware/myproject-D9B7bA7c.so'
mode = 0, handle = None, use_errno = False, use_last_error = False
winmode = None
def __init__(self, name, mode=DEFAULT_MODE, handle=None,
use_errno=False,
use_last_error=False,
winmode=None):
self._name = name
flags = self._func_flags_
if use_errno:
flags |= _FUNCFLAG_USE_ERRNO
if use_last_error:
flags |= _FUNCFLAG_USE_LASTERROR
if _sys.platform.startswith("aix"):
"""When the name contains ".a(" and ends with ")",
e.g., "libFOO.a(libFOO.so)" - this is taken to be an
archive(member) syntax for dlopen(), and the mode is adjusted.
Otherwise, name is presented to dlopen() as a file argument.
"""
if name and name.endswith(")") and ".a(" in name:
mode |= ( _os.RTLD_MEMBER | _os.RTLD_NOW )
if _os.name == "nt":
if winmode is not None:
mode = winmode
else:
import nt
mode = nt._LOAD_LIBRARY_SEARCH_DEFAULT_DIRS
if '/' in name or '\\' in name:
self._name = nt._getfullpathname(self._name)
mode |= nt._LOAD_LIBRARY_SEARCH_DLL_LOAD_DIR
class _FuncPtr(_CFuncPtr):
_flags_ = flags
_restype_ = self._func_restype_
self._FuncPtr = _FuncPtr
if handle is None:
> self._handle = _dlopen(self._name, mode)
E OSError: /home/hls4ml-user/hls4ml/test/pytest/hls4mlprj_qonnx_cnv-2w2a_Quartus/firmware/myproject-D9B7bA7c.so: cannot open shared object file: No such file or directory
../../../miniconda3/envs/hls4ml/lib/python3.10/ctypes/__init__.py:374: OSError
----------------------------- Captured stdout call -----------------------------
Output layers: ['Add_0']
Input shape: [32, 32, 3]
Topology:
Layer name: Quant_0, layer type: Quant, current shape: [[64, 3, 3, 3]]
Layer name: Quant_1, layer type: Quant, current shape: [[64, 3, 3, 64]]
Layer name: Quant_2, layer type: Quant, current shape: [[128, 3, 3, 64]]
Layer name: Quant_3, layer type: Quant, current shape: [[128, 3, 3, 128]]
Layer name: Quant_4, layer type: Quant, current shape: [[256, 3, 3, 128]]
Layer name: Quant_5, layer type: Quant, current shape: [[256, 3, 3, 256]]
Layer name: Quant_6, layer type: Quant, current shape: [[256, 512]]
Layer name: Quant_7, layer type: Quant, current shape: [[512, 512]]
Layer name: Quant_8, layer type: Quant, current shape: [[512, 10]]
Layer name: Mul_0, layer type: Merge, current shape: [[1, 32, 32, 3]]
Layer name: Sub_0, layer type: Merge, current shape: [[1, 32, 32, 3], [1]]
Layer name: Quant_9, layer type: Quant, current shape: [[1, 32, 32, 3]]
Layer name: Conv_0, layer type: Conv, current shape: [[1, 32, 32, 3], [64, 3, 3, 3]]
Layer name: BatchNormalization_0, layer type: BatchNormOnnx, current shape: [[1, 30, 30, 64], [64], [64], [64], [64]]
Layer name: Quant_10, layer type: Quant, current shape: [[1, 30, 30, 64]]
Layer name: Conv_1, layer type: Conv, current shape: [[1, 30, 30, 64], [64, 3, 3, 64]]
Layer name: BatchNormalization_1, layer type: BatchNormOnnx, current shape: [[1, 28, 28, 64], [64], [64], [64], [64]]
Layer name: Quant_11, layer type: Quant, current shape: [[1, 28, 28, 64]]
Layer name: MaxPool_0, layer type: MaxPooling2D, current shape: [[1, 28, 28, 64]]
Layer name: Conv_2, layer type: Conv, current shape: [[1, 14, 14, 64], [128, 3, 3, 64]]
Layer name: BatchNormalization_2, layer type: BatchNormOnnx, current shape: [[1, 12, 12, 128], [128], [128], [128], [128]]
Layer name: Quant_12, layer type: Quant, current shape: [[1, 12, 12, 128]]
Layer name: Conv_3, layer type: Conv, current shape: [[1, 12, 12, 128], [128, 3, 3, 128]]
Layer name: BatchNormalization_3, layer type: BatchNormOnnx, current shape: [[1, 10, 10, 128], [128], [128], [128], [128]]
Layer name: Quant_13, layer type: Quant, current shape: [[1, 10, 10, 128]]
Layer name: MaxPool_1, layer type: MaxPooling2D, current shape: [[1, 10, 10, 128]]
Layer name: Conv_4, layer type: Conv, current shape: [[1, 5, 5, 128], [256, 3, 3, 128]]
Layer name: BatchNormalization_4, layer type: BatchNormOnnx, current shape: [[1, 3, 3, 256], [256], [256], [256], [256]]
Layer name: Quant_14, layer type: Quant, current shape: [[1, 3, 3, 256]]
Layer name: Conv_5, layer type: Conv, current shape: [[1, 3, 3, 256], [256, 3, 3, 256]]
Layer name: BatchNormalization_5, layer type: BatchNormOnnx, current shape: [[1, 1, 1, 256], [256], [256], [256], [256]]
Layer name: Quant_15, layer type: Quant, current shape: [[1, 1, 1, 256]]
Layer name: Flatten_0, layer type: Reshape, current shape: [[1, 1, 1, 256]]
Layer name: MatMul_0, layer type: MatMul, current shape: [[1, 256], [256, 512]]
Layer name: BatchNormalization_6, layer type: BatchNormOnnx, current shape: [[1, 512], [512], [512], [512], [512]]
Layer name: Quant_16, layer type: Quant, current shape: [[1, 512]]
Layer name: MatMul_1, layer type: MatMul, current shape: [[1, 512], [512, 512]]
Layer name: BatchNormalization_7, layer type: BatchNormOnnx, current shape: [[1, 512], [512], [512], [512], [512]]
Layer name: Quant_17, layer type: Quant, current shape: [[1, 512]]
Layer name: MatMul_2, layer type: MatMul, current shape: [[1, 512], [512, 10]]
Layer name: Sub_1, layer type: Merge, current shape: [[1, 10], [1]]
Layer name: Div_0, layer type: Merge, current shape: [[1, 10], [1]]
Layer name: Mul_1, layer type: Merge, current shape: [[1, 10], [1]]
Layer name: Add_0, layer type: Merge, current shape: [[1, 10], [1]]
Interpreting Model ...
Output layers: ['Add_0']
Input shape: [32, 32, 3]
Topology:
Layer name: Quant_0, layer type: Quant, current shape: [[64, 3, 3, 3]]
Layer name: Quant_1, layer type: Quant, current shape: [[64, 3, 3, 64]]
Layer name: Quant_2, layer type: Quant, current shape: [[128, 3, 3, 64]]
Layer name: Quant_3, layer type: Quant, current shape: [[128, 3, 3, 128]]
Layer name: Quant_4, layer type: Quant, current shape: [[256, 3, 3, 128]]
Layer name: Quant_5, layer type: Quant, current shape: [[256, 3, 3, 256]]
Layer name: Quant_6, layer type: Quant, current shape: [[256, 512]]
Layer name: Quant_7, layer type: Quant, current shape: [[512, 512]]
Layer name: Quant_8, layer type: Quant, current shape: [[512, 10]]
Layer name: Mul_0, layer type: Merge, current shape: [[1, 32, 32, 3]]
Layer name: Sub_0, layer type: Merge, current shape: [[1, 32, 32, 3], [1]]
Layer name: Quant_9, layer type: Quant, current shape: [[1, 32, 32, 3]]
Layer name: Conv_0, layer type: Conv, current shape: [[1, 32, 32, 3], [64, 3, 3, 3]]
Layer name: BatchNormalization_0, layer type: BatchNormOnnx, current shape: [[1, 30, 30, 64], [64], [64], [64], [64]]
Layer name: Quant_10, layer type: Quant, current shape: [[1, 30, 30, 64]]
Layer name: Conv_1, layer type: Conv, current shape: [[1, 30, 30, 64], [64, 3, 3, 64]]
Layer name: BatchNormalization_1, layer type: BatchNormOnnx, current shape: [[1, 28, 28, 64], [64], [64], [64], [64]]
Layer name: Quant_11, layer type: Quant, current shape: [[1, 28, 28, 64]]
Layer name: MaxPool_0, layer type: MaxPooling2D, current shape: [[1, 28, 28, 64]]
Layer name: Conv_2, layer type: Conv, current shape: [[1, 14, 14, 64], [128, 3, 3, 64]]
Layer name: BatchNormalization_2, layer type: BatchNormOnnx, current shape: [[1, 12, 12, 128], [128], [128], [128], [128]]
Layer name: Quant_12, layer type: Quant, current shape: [[1, 12, 12, 128]]
Layer name: Conv_3, layer type: Conv, current shape: [[1, 12, 12, 128], [128, 3, 3, 128]]
Layer name: BatchNormalization_3, layer type: BatchNormOnnx, current shape: [[1, 10, 10, 128], [128], [128], [128], [128]]
Layer name: Quant_13, layer type: Quant, current shape: [[1, 10, 10, 128]]
Layer name: MaxPool_1, layer type: MaxPooling2D, current shape: [[1, 10, 10, 128]]
Layer name: Conv_4, layer type: Conv, current shape: [[1, 5, 5, 128], [256, 3, 3, 128]]
Layer name: BatchNormalization_4, layer type: BatchNormOnnx, current shape: [[1, 3, 3, 256], [256], [256], [256], [256]]
Layer name: Quant_14, layer type: Quant, current shape: [[1, 3, 3, 256]]
Layer name: Conv_5, layer type: Conv, current shape: [[1, 3, 3, 256], [256, 3, 3, 256]]
Layer name: BatchNormalization_5, layer type: BatchNormOnnx, current shape: [[1, 1, 1, 256], [256], [256], [256], [256]]
Layer name: Quant_15, layer type: Quant, current shape: [[1, 1, 1, 256]]
Layer name: Flatten_0, layer type: Reshape, current shape: [[1, 1, 1, 256]]
Layer name: MatMul_0, layer type: MatMul, current shape: [[1, 256], [256, 512]]
Layer name: BatchNormalization_6, layer type: BatchNormOnnx, current shape: [[1, 512], [512], [512], [512], [512]]
Layer name: Quant_16, layer type: Quant, current shape: [[1, 512]]
Layer name: MatMul_1, layer type: MatMul, current shape: [[1, 512], [512, 512]]
Layer name: BatchNormalization_7, layer type: BatchNormOnnx, current shape: [[1, 512], [512], [512], [512], [512]]
Layer name: Quant_17, layer type: Quant, current shape: [[1, 512]]
Layer name: MatMul_2, layer type: MatMul, current shape: [[1, 512], [512, 10]]
Layer name: Sub_1, layer type: Merge, current shape: [[1, 10], [1]]
Layer name: Div_0, layer type: Merge, current shape: [[1, 10], [1]]
Layer name: Mul_1, layer type: Merge, current shape: [[1, 10], [1]]
Layer name: Add_0, layer type: Merge, current shape: [[1, 10], [1]]
Creating HLS model
Writing HLS project
Done
----------------------------- Captured stderr call -----------------------------
g++: internal compiler error: Segmentation fault (program cc1plus)
Please submit a full bug report,
with preprocessed source if appropriate.
See <file:///usr/share/doc/gcc-7/README.Bugs> for instructions.
g++: error: myproject.o: No such file or directory
=============================== warnings summary ===============================
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/tensorflow_model_optimization/__init__.py:65
/home/hls4ml-user/miniconda3/envs/hls4ml/lib/python3.10/site-packages/tensorflow_model_optimization/__init__.py:65: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
if (distutils.version.LooseVersion(tf.version.VERSION) <
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/tensorflow_model_optimization/__init__.py:66
/home/hls4ml-user/miniconda3/envs/hls4ml/lib/python3.10/site-packages/tensorflow_model_optimization/__init__.py:66: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
distutils.version.LooseVersion(required_tensorflow_version)):
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/calmjs/parse/utils.py:13
/home/hls4ml-user/miniconda3/envs/hls4ml/lib/python3.10/site-packages/calmjs/parse/utils.py:13: DeprecationWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html
from pkg_resources import working_set
../../../miniconda3/envs/hls4ml/lib/python3.10/site-packages/pkg_resources/__init__.py:2871
/home/hls4ml-user/miniconda3/envs/hls4ml/lib/python3.10/site-packages/pkg_resources/__init__.py:2871: DeprecationWarning: Deprecated call to `pkg_resources.declare_namespace('calmjs')`.
Implementing implicit namespace packages (as specified in PEP 420) is preferred to `pkg_resources.declare_namespace`. See https://setuptools.pypa.io/en/latest/references/keywords.html#keyword-namespace-packages
declare_namespace(pkg)
test/pytest/test_qonnx.py: 2101 warnings
/home/hls4ml-user/miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/util/onnx.py:40: DeprecationWarning: `mapping.TENSOR_TYPE_TO_NP_TYPE` is now deprecated and will be removed in a future release.To silence this warning, please use `helper.tensor_dtype_to_np_dtype` instead.
return np.zeros(dims, dtype=onnx.mapping.TENSOR_TYPE_TO_NP_TYPE[vi.type.tensor_type.elem_type])
test/pytest/test_qonnx.py::test_jet_tagging[Vivado]
/home/hls4ml-user/miniconda3/envs/hls4ml/lib/python3.10/site-packages/qonnx/core/modelwrapper.py:93: UserWarning: Some old-style domain attributes were automatically converted to new-style,
i.e. domain=finn to domain=qonnx.custom_op.<general|fpgadataflow|...>
warnings.warn(
-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
=========================== short test summary info ============================
FAILED test_qonnx.py::test_cnv_2w2a[Quartus] - OSError: /home/hls4ml-user/hls4ml/test/pytest/hls4mlprj_qonnx_cnv-2w2a_Quar...
=========== 1 failed, 8 passed, 2106 warnings in 3564.98s (0:59:24) ============