/drift-meta-learning

Primary LanguagePythonMIT LicenseMIT

Drift meta learning

Master's thesis in Computer Science at the University of BrasĂ­lia (PPGI).

The objective is to perform drift detection using meta learning by predicting the performance of a base model (regression or classification) with unknown target.

To Do:

  • Offline stage MetaLearner implementation
  • Online stage MetaLearner implementation
  • Meta model incremental learning
  • Statistical meta features implementation
  • Clustering meta features implementation
  • PSI implementation
  • Domain classifier implementation
  • Meta/base model hyperparameter tuning
  • TimeSeries cross validation usage
  • Different base model metrics (meta labels) experiments
  • Target delay experiments
  • Different base model experiments
  • Meta base dimensionality reduction experiments
  • Other drift metrics implementation
  • Other databases experiments
  • Measure elapsed time
  • Meta feature selection experiments
  • Baseline
  • Evaluation metrics for meta model vs baseline
  • Drift alert definition
  • Drift alert configuration
  • Code documentation
  • Readme
  • Experiments notebooks adjustments to fit new MetaLearner structure