An ergonomic and lightweight multi-agent orchestration framework inspired by OpenAI's Swarm. Designed for simplicity and efficiency, this framework empowers developers to build scalable and flexible multi-agent systems in Go.
Features:
- 🚀 Lightweight Orchestration: Efficiently manage multi-agent systems with a minimalistic and performant design. Perfect for applications where simplicity and speed are critical.
- 🛠️ Native Function Calls: Seamlessly integrate with your existing tools and services using native Go function calls. No complex wrappers or unnecessary abstractions—just straightforward integration.
- ⚡ Event-Driven Workflows: Build extensible and dynamic workflows driven by events. This approach ensures flexibility and adaptability for automating complex processes.
- 🧩 Composable Architecture: Create sophisticated systems by combining simple, reusable components. The framework’s modular design encourages clean and maintainable code.
Add swarm to go mod by:
go get -u github.com/feiskyer/swarm-go
Setup environment variables first:
- For OpenAI, set OPENAI_API_KEY and optional OPENAI_API_BASE for OpenAI API compatible AI service.
- For Azure OpenAI, set AZURE_OPENAI_API_KE and AZURE_OPENAI_API_BASE.
Basic Agent
A basic agent with function calls:
package main
import (
"fmt"
"reflect"
"github.com/feiskyer/swarm-go"
)
func main() {
// Create a new agent
agent := swarm.NewAgent("Assistant")
agent.WithModel("gpt-4o").
WithInstructions("You are a helpful assistant.")
// Example function that the agent can call
weatherFunc := swarm.NewAgentFunction(
"getWeather",
"Get the current weather for a given location. Requires a location parameter.",
func(args map[string]interface{}) (interface{}, error) {
location, ok := args["location"].(string)
if !ok {
return nil, fmt.Errorf("location not provided")
}
return fmt.Sprintf("The weather in %s is sunny", location), nil
},
[]swarm.Parameter{{Name: "location", Type: reflect.TypeOf("string")}},
)
// Add function to agent
agent.AddFunction(weatherFunc)
// Run the demo loop
swarm.RunDemoLoop(agent, nil, false, false)
}
Streaming Output
Use streaming output for your agent:
package main
import (
"fmt"
"reflect"
"github.com/feiskyer/swarm-go"
)
func main() {
// Create a new agent
agent := swarm.NewAgent("Assistant")
agent.WithModel("gpt-4o").
WithInstructions("You are a helpful assistant.")
// Example function that the agent can call
weatherFunc := func(args map[string]interface{}) (interface{}, error) {
location, ok := args["location"].(string)
if !ok {
return nil, fmt.Errorf("location not provided")
}
return fmt.Sprintf("The weather in %s is sunny", location), nil
}
// Add function to agent
agent.AddFunction(swarm.NewAgentFunction(
"getWeather",
"Get the current weather for a given location. Requires a location parameter.",
weatherFunc,
[]swarm.Parameter{{Name: "location", Type: reflect.TypeOf("string")}},
))
// Run the demo loop
swarm.RunDemoLoop(agent, nil, true, false)
}
Multi-agent handoff
Handoff example for multiple agents:
package main
import (
"context"
"fmt"
"os"
"github.com/feiskyer/swarm-go"
)
func main() {
client := swarm.NewSwarm(swarm.NewOpenAIClient(os.Getenv("OPENAI_API_KEY")))
englishAgent := swarm.NewAgent("English Agent").WithInstructions("You only speak English.")
spanishAgent := swarm.NewAgent("Spanish Agent").WithInstructions("You only speak Spanish.")
transferToSpanishAgent := swarm.NewAgentFunction(
"transferToSpanishAgent",
"Transfer spanish speaking users immediately.",
func(args map[string]interface{}) (interface{}, error) {
return spanishAgent, nil
},
[]swarm.Parameter{},
)
englishAgent.AddFunction(transferToSpanishAgent)
messages := []map[string]interface{}{
{
"role": "user",
"content": "Hola. ¿Como estás?",
},
}
response, err := client.Run(context.TODO(), englishAgent, messages, nil, "gpt-4o", false, true, 10, true)
if err != nil {
fmt.Println(err)
return
}
fmt.Println(response.Messages[len(response.Messages)-1]["content"])
}
Simple Workflow
Flexible Workflow
Use flexible workflow for event-driven multi-agent orchestration.
Flexible workflow with parallel tasks
Use flexible workflow for event-driven multi-agent orchestration with parallel tasks.
The project is opensourced at github feiskyer/swarm-go with MIT License.
If you would like to contribute to the project, please follow these guidelines:
- Fork the repository and clone it to your local machine.
- Create a new branch for your changes.
- Make your changes and commit them with a descriptive commit message.
- Push your changes to your forked repository.
- Open a pull request to the main repository.