/RotationNet-Hub

Train your RotationNet based on Tensorflow Hub models

Primary LanguagePython

RotationNet Hub

An unofficial implementation of RotationNet, using models from Tensorflow Hub.

RotationNet

Asako Kanezaki, Yasuyuki Matsushita and Yoshifumi Nishida. RotationNet: Joint Object Categorization and Pose Estimation Using Multiviews from Unsupervised Viewpoints. CVPR, pp.5010-5019, 2018. (pdf) (project)

Dependencies

  • tensorflow >= 1.13.0
  • numpy
  • tqdm

Usage example

Download multiview images:

$ wget https://data.airc.aist.go.jp/kanezaki.asako/data/modelnet40v2png_ori4.tar; tar xvf modelnet40v2png_ori4.tar  

From command line

Call train_rotationnet.py file.

$ python train_rotationnet.py [-h] [--module_path MODULE_PATH]
                            [--train_images_path TRAIN_IMAGES_PATH]
                            [--test_images_path TEST_IMAGES_PATH]
                            [--image_height IMAGE_HEIGHT]
                            [--image_width IMAGE_WIDTH]
                            [--batch_size BATCH_SIZE] [--n_views N_VIEWS]
                            [--warmup_epochs WARMUP_EPOCHS]
                            [--warmup_learning_rate WARMUP_LEARNING_RATE]
                            [--epochs EPOCHS] [--learning_rate LEARNING_RATE]
                            [--decay_steps DECAY_STEPS]
                            [--decay_rate DECAY_RATE] [--momentum MOMENTUM]
                            [--weight_decay WEIGHT_DECAY]
                            [--checkpoint_dir CHECKPOINT_DIR]
                            [--summary_dir SUMMARY_DIR]
                            [--max_to_keep MAX_TO_KEEP] [--v_cands V_CANDS]

optional arguments:
  -h, --help            show this help message and exit
  --module_path MODULE_PATH
                        Path to tf Hub module
  --train_images_path TRAIN_IMAGES_PATH
                        Path to training data
  --test_images_path TEST_IMAGES_PATH
                        Path to testing data
  --image_height IMAGE_HEIGHT
                        Image height
  --image_width IMAGE_WIDTH
                        Image width
  --batch_size BATCH_SIZE
                        Number of objects per batch
  --n_views N_VIEWS     Number of views per object
  --warmup_epochs WARMUP_EPOCHS
                        Number of epochs training only the last dense layer of
                        RotationNet
  --warmup_learning_rate WARMUP_LEARNING_RATE
                        Learning rate during warmup epochs
  --epochs EPOCHS       Number of total training epochs
  --learning_rate LEARNING_RATE
                        Learning rate
  --decay_steps DECAY_STEPS
                        Number of steps to decay the learning rate value
  --decay_rate DECAY_RATE
                        Learning rate decaying rate
  --momentum MOMENTUM   Momentum
  --weight_decay WEIGHT_DECAY
                        L2 regularization rate
  --checkpoint_dir CHECKPOINT_DIR
                        Path for saving tensorflow checkpoints
  --summary_dir SUMMARY_DIR
                        Path for saving summaries for tensorboard
  --max_to_keep MAX_TO_KEEP
                        Number of checkpoints to keep
  --v_cands V_CANDS     Path to .npy array file with view candidates

Jupyter notebook

# This config should give about 0.94 precision
# on testing set after 30 epochs

from src.model import Model
from src.trainer import Trainer
from src.dataloader import Dataloader
from src.logger import Logger
from src.utils import Config

config  = {"module_path": "https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/feature_vector/2",
           "train_images_path": "modelnet40v2png_ori4/*/train/*",
           "test_images_path": "modelnet40v2png_ori4/*/test/*",
           "image_height": 224,
           "image_width": 224,
           "batch_size": 3,
           "n_views": 20,
           "warmup_epochs": 3,
           "checkpoint_dir": "checkpoints/",
           "summary_dir": "summary/",
           "warmup_learning_rate": 0.01,
           "max_to_keep": 1,
           "epochs": 30,
           "v_cands": "vcand_case2.npy",
           "weight_decay": 1e-4,
           "momentum": 0.9,
           "decay_rate": 0.9,
           "decay_steps":  12000,
           "learning_rate": 0.00005 }

#Model config
config = Config(config)
#Session config
config_proto = tf.ConfigProto()
config_proto.gpu_options.allow_growth = True
#create session
sess = tf.InteractiveSession(config=config_proto)
#create dataloader
dataloader = Dataloader(sess, config, prefetch_buffer_size = 10)
#create the model
model = Model(sess, dataloader, config)
model.build_model()
#create a logger instance for saving summaries
logger = Logger(sess, config)
#create Trainer and train your RotationNet
trainer = Trainer(sess,model,dataloader, logger, config)
trainer.train()