/maestro-dev

A dev version of MAESTRO

Primary LanguageC++MIT LicenseMIT

maestro-dev

A dev version of MAESTRO. We do not prorvide technical support for this version.

Package Dependences

C++ compiler (g++)

SCONS build system (scons)

Boost libarary (libboost-all-dev)

How to compile the code

scons

How to run the program

./run.sh

How to change the parameters

Change the contents of "run.sh" For parameters other than listed below, please ignore it; active development is going on them so correct functionailty is not guaranteed.

--verbose=true/false : print out detailed information or not

--DFSL_file='data/DFSL_description/Resnet50_dla.m' : Specify the target dataflow and layer description file

--noc_bw=64 : NoC bandwidth

--noc_hop_latency=1 : NoC latency per hops

--noc_mc_support=true : NoC multicast support (In current dev version it's always on)

--num_pes=256 : Number of PEs

--num_pe_alus=1 : PE ALU vector width

--l1_size=32 : l1 buffer size (inactive in the current dev version)

--l2_size=512 : l2 buffer size (inactive in the current dev version)

How to change the DNN model and dataflow

Create a DFSL file under "data/DFSL_description" and point the file using --DFSL_file parameter in "run.sh"

For syntax of the DFSL file, please refer to other DFSL files in data/DFSL_description.

How to convert Pytorch model to MAESTRO dataflow

cd data/pytorch_example

Use torchvision.models

Run with default setting

python torch_to_maestro.py

Run MAESTRO with the converted dataflow file

Change the contents of "run.sh"

--DFSL_file='data/pytorch_example/out/out.m'

Run MAESTRO

./run.sh

Change the input arguement

python torch_to_maestro.py --input_size 3,224,224 --model mobilenet_v2 --dataflow os --outfile out.m

--input_size: the input image size of the first layer

--model: the model name from torchvision.models

--dataflow: the dataflow for each layer, choose from "os, ws, rs, dla"

--outfile: the MAESTRO dataflow output file name

Contributors

Hyoukjun Kwon (hyoukjun@gatech.edu): Main developer, developed core framework and functionalities

Prasanth Chatarasi (cprasanth@gatech.edu): Improved APIs

Felix (Sheng-Chun) Kao (felix@gatech.edu): Implemented Pytorch front-end