/FastExplain

Fit Fast, Explain Fast

Primary LanguagePythonMIT LicenseMIT

FastExplain

Fit Fast, Explain Fast

Installing

pip install fast-explain

Clean Data, Fit ML Models and Explore Results all in one line.

FastExplain provides an out-of-the-box tool for analysts to quickly explore data, train and interpret models, with flexibility to fine-tune if needed.

  • Automated cleaning and fitting of machine learning models with hyperparameter search
  • Aesthetic display of explanatory methods ready for reporting
  • Connected interface for all data, models and related explanatory methods

Quickstart

Open In Colab

Automated Cleaning and Fitting

from FastExplain import *
df = load_titanic_data()
classification = model_data(df, dep_var="Survived", model="ebm")

Aesthetic Display

feature_correlation(classification.data.df)

Feature Correlation

plot_one_way_analysis(classification.data.df, "Age", "Survived", filter = "Sex == 1")

One Way

plot_ebm_explain(classification.m, classification.data.df, "Age")

EBM

plot_ale(classification.m, classification.data.xs, "Age", filter = "Sex == 1", dep_name = "Survived")

ALE

classification_1 = model_data(df, dep_var="Survived", model="rf", hypertune=True, cont_names=['Age'], cat_names = [], hypertune=True)
models = [classification.m, classification_1.m]
data = [classification.data.xs, classification_1.data.xs]
plot_ale(models, data, 'Age', dep_name = "Survived")

multi_ALE

Connected Interface

classification_1.plot_one_way_analysis("Age", filter = "Sex == 1")
classification_1.plot_ale("Age", filter = "Sex == 1")
classification_1.shap_dependence_plot("Age", filter = "Sex == 1")

SHAP

classification_1.error
# {'auc': {'model': {'train': 0.9934332941166654,
# 'val': 0.8421607378129118,
# 'overall': 0.9665739941840028}},
# 'cross_entropy': {'model': {'train': 0.19279692001978943,
# 'val': 0.4600233891109683,
# 'overall': 0.24648214781700722}}}

Models Supported

  • Random Forest
  • XGBoost
  • Explainable Boosting Machine
  • ANY Model Class with fit and predict attributes
pip install lightgbm
from lightgbm import LGBMClassifier
custom_model = model_data(df, 'Survived', model=LGBMClassifier)
custom_model.plot_ale("Age")
custom_model.shap_dependence_plot("Age")

Exploratory Methods Supported:

  • One-way Analysis
  • Two-way Analysis
  • Feature Importance Plots
  • ALE Plots
  • Explainable Boosting Methods
  • SHAP Values
  • Partial Dependence Plots
  • Sensitivity Analysis