/onn-simulation

A program using pytorch to simulate diffracive deep nerual network (D2NN), containing updates (relative to the original paper) of incoherent propagation, parallel computation, nonlinear activation, changing of propagating distance.

Primary LanguagePython

All-Optical Neural Network Simulation | D2NN 仿真

Author: Feng Zijia 冯子嘉

Date: 2023.8.13

Updated Lastly: 2024.5.13

Please select the language you want to read:

请选择你想要阅读的语言:

English Version

Running Instructions

File Descriptions:

This project implements a simulation of an all-optical neural network, achieving up to 97% accuracy on MNIST (of course, with a nonlinear that is impossible in reality).

The train folder is used for training, and the predict folder for prediction.

This document details the principles and implementation process. It is recommended to read the project documentation before accessing the train and predict folders. The source code involved in the project documentation is mainly contained in the train folder.

Both train and predict folders contain a README.txt file, which should be read before running the files. Be sure to read README.txt before running train. Please, be sure to read it, please be sure to read it, please be sure to read it.

The preprocessing method is in the train folder's torch_prepro.py file. If you encounter any problems with preprocessing or any step of the running, feel free to click on issue to provide feedback OR contact the author.

Literature is the references for this project, which can be compared with the references at the end of the project document.

Project Introduction

The architecture of classical neural networks is well-known. Neural networks are mostly trained and inferred on GPU platforms. In the paper by Lin etc., they proposed a novel neural network architecture based on light diffraction and phase modulation, $D^2NN$ (Deep Diffractive Neural Network). ^1 All-optical neural networks have unique advantages in inference tasks, including low energy consumption and near-light speed. ^3

This project uses Python + Pytorch to simulate all-optical neural networks and applies it to MNIST handwritten digit recognition, achieving an accuracy of $93.5%$, which is higher than the $91.75%$ in the original paper. The project continues to explore methods to improve the model architecture, achieving a simulation accuracy of $96.5%$ after introducing relevant improvements.

This project mainly refers to the paper All-optical machine learning using diffractive deep neural networks. Please refer to the source folder for preprocessing and training code, and the model folder for prediction.

Basic Principles

The basic architecture of the network consists of three types of layers: the propagation layer propagation_layer that manages the spatial free propagation of light waves, the modulation layer modulation_layer that modulates the phase and amplitude of light, and the imaging layer imaging_layer that finally performs prediction.

The training process is divided into forward propagation and backpropagation, while the inference process can be completed by forward propagation alone.

Forward Propagation

In forward propagation, the network completely simulates the physical propagation of light.

Initially, a beam of coherent light is directed into a hollowed-out digit to obtain the incident light field (input plane), followed by light propagation in free space, determined by Fresnel diffraction. Phase and amplitude modulation pieces (L1, L2...) are added at equal intervals during light propagation. The final imaging screen contains ten squares, each representing a digit, and the square with the highest light intensity is the prediction result of the all-optical neural network.

The architecture is displayed in the following diagram^1:

network

The final effect is shown below.

Incident light field Imaging light intensity
Incident light field distribution Imaging light intensity distribution

It can be seen that the light intensity in the first square is significantly higher than the other squares, thus 0 is the prediction result of this neural network.

Backpropagation

The phase and amplitude modulation pieces in the modulation_layer are the only learnable parameters in the network, controlling light propagation. Their update is completed using the gradient descent method. The final modulation pieces are shown below:

Phase modulation Amplitude modulation
Phase modulation Amplitude modulation

Environmental Configuration

Use vscode ssh to connect to the Jingyi Science Association server for training.

Software environment: torch '2.0.1+cu117' + numpy '1.23.5'

Hardware environment: NVIDIA GeForce RTX 3090 (Jingyi Science Association server)

Dataset: MNIST handwritten digit recognition

Code Implementation

OpticalNetwork

Related code is in train.py, onn_am.py, and layer_show.py. The first code is the core training code, the second code only contains the optical network, and the third code displays the work of the propagation and modulation layers.

The author's own OpticalNetwork class inherits from torch.nn. Its implementation can be referred to separately in onn_am.py. The class contains three layers: the propagation layer propagation_layer, the modulation layer modulation_layer, and the imaging layer imaging_layer.

propagation_layer simulates the change in the light field before and after light propagates a certain distance z in free space. The author uses the Fresnel transfer function (Transmittive Function, TF) method, referring to Computational Fourier Optics to complete the propTF() function. The result after a propagation layer is shown below.

diff

It can be seen that the convolution effect of free space propagation causes some blurring of the image.

The Fresnel transfer function method can retain second-order small quantities under the paraxial approximation using the angular spectrum method. Its principle is detailed in Goodman: Introduction to Fourier Optics, Edition 4th. Its implementation is detailed in the training code train.py.

modulation_layer mainly introduces phase and amplitude modulation pieces. The modulation pieces have the same size as the sampling space. As the only adjustable parameter layer, the phase and amplitude modulation parameters can be directly called using loss.backward() for calculation and optimizer.step() for updates.

Below is the light intensity distribution after random phase modulation and propagation over distance $z$.

mod

imaging_layer completes the tasks of imaging and output. After calculating the total light intensity, the imaging_layer will statistically analyze the light intensity in each square and normalize it, outputting a tensor of dim = 10, with the highest light intensity being the prediction result.

For example, in the lower right image, the corresponding tensor is:

0.1584, 0.1126, 0.1083, 0.1370, 0.1285, 0.8973, 0.1393, 0.1145, 0.2016, 0.1920

It is evident that tensor[5] has the largest value, thus 5 is our prediction result.

Incident light field

It is particularly important to note: the normalization operation in imaging_layer cannot be completed in-place, otherwise gradient calculation will be erroneous. A new value_ array must be defined and then returned.

The final model consists of

$\rm 5 \times propagation_layer + 5 \times modulation_layer + imaging_layer$

The model's loss function uses MSELoss(), and the parameter initialization method selects kaiming_uniform_ or uniform_, with Adam as the optimizer.

Parameters

These are fixed parameters; only the parameters and their meanings are listed here, with the reasons for their selection discussed in "Reasons for Parameter Selection"

Optical parameters

M = N = 250 # sampling count on each axis
lmbda = 0.5e-6 # wavelength of coherent light
L = 0.2 # the area to be illuminated
w = 0.051 # the half-width of the light transmission area
z = 100 # the propagation distance in free space

When using the entire MNIST dataset for training, the neural network parameters are:

learning_rate = 0.003
epochs = 6
batch_size = 128

Data Preprocessing

The related code is in prepro.py and prepro_label.py. The core involves resizing the images to $(2w) \times (2w)$ and embedding them in an $L \times L$ square area. This generates all images as $M \times M$, unifying the shape of the incident light field. The before and after comparison is shown below.

pre

Label preprocessing involves expanding a number into a dim = 10 array. If label = $i$, then generate the unit vector $e_{i+1}$.

After preprocessing, save as an npy file for easy transfer and reading on different devices.

Data Reading

Small batch data reading can be directly completed through np.load(), but the training data of MNIST exceeds the GPU memory limit, so it must be completed through dataloader. Specific code refer to train.py or train_am.py.

Model Performance and Analysis

Training Performance

The following results did not include amplitude modulation, only phase modulation. The results with amplitude modulation will be discussed in the next section "Model Optimization".

Initially, the author used the first $2%$ of MNIST for training and testing, that is, $ \rm 1000 \times train + 200 \times validation + 200 \times test$.

If using params:

learning_rate = 0.003
epochs = 20
batch_size = 128

A training and testing session takes about 50s, which is convenient for parameter tuning. Below is one of the output results, with the weights saved to weights_small.pt

Using cuda device
Epoch [1/20], Training Loss: 0.1198, Training Accuracy: 70.10%,
...
Epoch [20/20], Training Loss: 0.0255, Training Accuracy: 95.90%,
Validation Loss: 0.0397, Validation Accuracy: 87.50%
Test Accuracy: 90.50%

On a small batch dataset, the author achieved a test accuracy of up to 92.5%. The average accuracy is about $91%$

Later, the author used the entire MNIST for training and testing, that is, $ \rm 50000 \times train + 10000 \times validation + 10000 \times test$. Using parameters

learning_rate = 0.003
epochs = 6
batch_size = 128

A training and testing session takes about 40 minutes. Below is one of the output results, with the weights saved to weights_large.pt.

Epoch [6/6], Training Loss: 0.0243, Training Accuracy: 92.86%,
Validation Loss: 0.0225, Validation Accuracy: 93.64%
Test Accuracy: 92.65%

On a large batch dataset, the validation set accuracy exceeded $93.5%$, and the test set accuracy also exceeded $92.5%$. Without amplitude modulation, the simulation result in the original paper was $91.75%$. The results are close.

We list the confusion_matrix for both large batch data and small batch data for comparison.

Large batch data Small batch data
conf_am conf

Result Display

We demonstrate the model's prediction performance by listing the normalized output results output and comparing the incident light field with the final imaging light intensity.

  • Without amplitude modulation
[0.1320, 0.1467, 0.2757, 0.6138, 0.3394, 0.4097, 0.3318, 0.1327, 0.2697, 0.1574]

4

[[0.0817, 0.1322, 0.1069, 0.3428, 0.1222, 0.1302, 0.0683, 0.0961, 0.8899, 0.0956]]

contra9

  • With amplitude modulation:
[[0.0813, 0.1146, 0.2029, 0.3622, 0.7564, 0.1387, 0.0544, 0.0728, 0.2183, 0.4007]]

am_9

[[0.0088, 0.0123, 0.0308, 0.0656, 0.1741, 0.0357, 0.0339, 0.3735, 0.0609, 0.9047]]

7

Comparison images are generated in predict.py and predict_am.py.

Running Guide

step1: Preprocessing

Run prepro.py & prepro_label.py to generate the preprocessed light field distribution and save it as an npy file. Be sure to modify the parameters according to the hints in the prepro.py file.

step2: Model Training

We provide two types of models here: large.py, large_am.py. The former only has phase modulation, while the latter introduces both amplitude and phase modulation. Change the filename to match the file name generated by prepro.py.

step3: Model Prediction

Run predict.py or predict_am.py according to the type of model trained in the previous step. Change line 157 in u0 = test_data_transposed[17] to the data you want to run. This will generate the final comparison images, as shown in the previous section.

Model Optimization

Here we mainly discuss the optimization of the model architecture, with the reasons for parameter choices detailed in the next chapter: Reasons for Selection. This section proposes four optimization methods: increasing the number of layers, adding amplitude modulation, introducing nonlinear activation functions, and changing the propagation distance.

Adjusting the architecture, all small batch data use parameters lr = 0.003, epoch = 20. Phase initialization uses a uniform distribution in $(0,4\pi)$. Large batch data all use parameters lr = 0.003, epoch = 6. Phase initialization uses a uniform distribution in $(0,4\pi)$

Increasing Layer Count

The most obvious method in adjusting architecture is to increase the number of layers. The experimental results on small batch data are shown below:

Number of layers Accuracy
1 8.5%
2 63.5%
3 87.5%
4 89.0%
5 90.5%
8 92.0%
12 92.5%

It is evident that increasing the number of layers can significantly improve accuracy, but in real life, this is more difficult to manufacture and use, and manufacturing process errors may increase. 5-8 layers should be a suitable and balanced choice.

Adding Amplitude Modulation

Related code is in all files ending with am. All files ending with am represent amplitude modulation.

Secondly, amplitude modulation is added on top of phase modulation.

Below are the training results on the full MNIST set. Through comparison, adding amplitude modulation can significantly improve accuracy without adding much training time. However, it increases complexity in real-world applications.

With amplitude modulation Without amplitude modulation
test 93.4% 92.5%
validation 93.9% 93.5%
Epoch [6/6], Training Loss: 0.0203, Training Accuracy: 93.64%,
Validation Loss: 0.0191, Validation Accuracy: 93.86%
Test Accuracy: 93.40%
With amplitude modulation Without amplitude modulation
conf_am conf

Nonlinear Activation

Although the model naturally introduces certain nonlinear factors in the propagation process propagation_layer, the overall implementation still relies on linear superposition. Introducing a nonlinear activation function will positively impact the model. Therefore, this paper introduces a complex ReLU function crelu^6, adjusting the light field completed by modulation, ultimately achieving an accuracy of over $97%$.

def crelu(x):
    return torch.relu(x.real) + j * torch.relu(x.imag)

It is particularly noteworthy that introducing crelu may result in all imaging results being zero, which may cause problems in the normalization calculation of norm. At this time, we can solve this problem by giving norm a baseline. The code is detailed in large_relu.py, simply change norm to norm_nonzero.

with relu without relu
test 96.98% 92.5%
validaiton 97.01% 93.5%
Epoch [6/6], Training Loss: 0.0046, Training Accuracy: 98.80%, 
Validation Loss: 0.0059, Validation Accuracy: 97.01%
Test Accuracy: 96.98%

It is worth noting that using csigmoid does not achieve similar effects. This indicates that applying sigmoid to complex values cannot be completed simply by applying it to the real and imaginary parts.

Epoch [1/6], Training Loss: 0.1367, Training Accuracy: 11.36%, 
Validation Loss: 0.1367, Validation Accuracy: 10.64%

The major disadvantage of this method is the difficulty of its physical implementation. Currently, it is difficult to find a suitable and convenient optical medium to introduce complex activation functions. $^3$

Changing propagating distance

Related code is in changez.py.

This approach changes z, making z a learnable parameter. Testing on small batch data showed that using a high learning rate caused z to fluctuate dramatically, with accuracy fluctuating around 10%, as shown in the left image; whereas a low learning rate almost does not change z, as shown in the right image. Therefore, this modification was abandoned.

20 1
lr = 20 lr = 1

Using Distributed Computing

Drawing from the method of shared weights and biases in convolutional neural networks, the implementation method in this project is to add several parallel connection layers. See large_dn1n_final.py for details.

This training is incredibly slow... It didn't finish after two runs. The effect was not very good, indicating that at this level of nonlinearity, we have reached the limit.

Illustration: (Referencing the Zhou etc. 2021 article, inspiration from reconfigurable ONN)

weights_large_dn1n_feature20.pt
Epoch [4/5], Training Loss: 0.0208, Training Accuracy: 93.37%,
Validation Loss: 0.0191, Validation Accuracy: 94.05%
Epoch [5/5], Training Loss: 0.0205, Training Accuracy: 93.73%,
Validation Loss: 0.0187, Validation Accuracy: 93.91%
Test Accuracy: 93.29%

Results:

validation set test set
2 epoches + crelu 96.95% 96.91%
5 epoches 93.91% 93.29%

Switching Propagation Simulation Methods

Using the long-distance transmission correction method in propagation_ASM.py, training code in provided_large.py. The effect showed no significant difference.

Incoherent Propagation

Prediction in predict_inco.py, where inco stands for incoherent.

Training in large_inco.py. Weights are also made public. Performance-wise, the best after incoherent was about 58%. According to Professor Lin Xing, this is because incoherent light does not have negative value operations.

Reasons for Parameter Selection

Optical Parameters

M = N = 250 # sampling count on each axis
lmbda = 0.5e-6 # wavelength of coherent light
L = 0.2 # the area to be illuminated
w = 0.051 # the half-width of the light transmission area
z = 100 # the propagation distance in free space

Parameter $w$ was predetermined, following the method in the Computational book, while the selection of $L$ is based on the Nyquist law. To simulate real optical conditions, we need to sample the light field properly. The required sampling range should be larger than the actual light field range, with the expansion ratio set as Q. The Fresnel number $N_F = w ^2 / (z \times \lambda)$ we combine with the diagram in Goodman: Introduction to Fourier Optics to choose Q slightly less than 2.

sample

Our selection of the $M$ parameter has some flaws; if a larger value was chosen, it might reduce aliasing more effectively. However, considering the training cost and preprocessing cost are proportional to $M ^ 2$, we use $M = 250$ for simulation, which is a compromise between efficiency and performance.

The choice of $z$ is based on preliminary propagation simulation experiments. The propTF method maintains higher clarity at smaller $z$, and $z = 100$ allows for some diffraction phenomena without causing the image to appear repetitive or widely blurred.

Neural Network Parameters

Adjustment of neural network parameters mainly relies on experimental results.

It is particularly worth mentioning that the paper provided a $\rm batch_size = 8$. However, when the author personally experimented with $\rm batch_size = 8$, accuracy generally fluctuated around 80%, and this caused much frustration. Changing to 128 broke this limit and had a better effect.

lr should not be too high or too low. Under the condition of the full MNIST set, $\rm test_accuracy$ and $\rm validation_accuracy $ are generally aligned, temporarily observing no overfitting phenomena, indicating that an lr of $0.003$ is relatively large, serving a certain regularizing function.

Reference

中文版本

运行须知

文件说明:

本项目实现了全光神经网络的仿真,在 MNIST 上最高达到了 97% 的正确率(当然是加了一个现实中根本不可能实现的非线性)

train 文件夹用于训练,predict 用于预测。

本文档中详述了原理及实现过程,建议先阅读项目文档再点进 train 与 predict 文件夹。项目文档中涉及的源代码主要蕴含在 train 文件夹中。

train 与 predict 文件夹内均有 README.txt 文件,建议查看后运行文件。运行train之前请务必查看README.txt。请务必查看,请务必查看,请务必查看。

预处理的方法在train文件夹下的torch_prepro.py中。如果预处理或运行的任何一步遇到问题,欢迎点击issue反馈 OR 联系作者。

literature 是本项目的参考文献,可以对照项目文档最后的 reference 查看。

项目简介

经典神经网络的架构人们已经耳熟能详。神经网络多基于GPU平台进行训练和推断。在Lin etc.的论文中,他们提出了一种基于光的衍射与相位调制的新型神经网络架构 $D^2NN$ (Deep Diffractive Neural Network)。1 全光神经网络在推断任务(Inference task)中具有低能耗、近光速的独特优势。3

本项目使用 Python + Pytorch 对全光神经网络进行仿真,并应用于MNIST手写数字识别中,通过调参取得了 $93.5%$ 的正确率,高于原始论文 $91.75%$ 的结果。本项目继续探索了对模型架构的改进方法,在引入相关改进后取得了 $96.5%$ 的仿真正确率。

本项目主要参考论文 All-optical machine learning using diffractive deep neural networks。预处理及训练代码请参考 train 文件夹中的内容,预测请参考 predict 文件夹中的内容。

基本原理

该网络的基本架构由三种 layer 组成,分别为:主管光波的空间自由传播的传播层 propagation_layer、进行光的相位与振幅调制的调制层 modulation_layer、以及最终实现预测的成像层 imaging_layer

训练过程分为前向传播与反向传播,推断过程前向传播即可完成。

前向传播

在前向传播中,该网络完整地模拟了光的物理传播过程。

首先由一束相干光打入镂空的数字获得入射光场(input plane),接下来光在自由空间中传播,由菲涅尔衍射决定。在光传播的等间隔处加入了相位与振幅调制片(L1, L2...)。最后的成像屏中有十个方块,每个代表一个数字,squares中所获光强最大的一个即为全光神经网络的预测结果。

架构在下图中展现1

network

最终实现的效果如下所示。

入射光场 成像光强
入射光场分布 成像光强分布

可以看到第一个square中的光强明显大于其余几个方块,因此0即为该神经网络的预测结果。

反向传播

modulation_layer 中的相位与振幅调制片是网络中唯一的learnable parameter, 它们控制着光的传播。其更新使用梯度下降法完成。最终的调制片示例如下:

相位调制 振幅调制
相位调制 振幅调制

环境配置

使用vscode ssh连接精仪科协服务器进行训练。

软件环境: torch '2.0.1+cu117' + numpy '1.23.5'

硬件环境: NVIDIA GeForce RTX 3090单卡。作者没有实现多卡联跑,有实现的同学特别欢迎联系作者!

数据集: MNIST 手写数字识别。

代码实现

OpticalNetwork

本部分的相关代码在 train.py, onn_am.py, layer_show.py中。第一个代码是训练的核心代码,第二个代码只含有optical network,第三个代码展示了传播层和调制层的工作。

作者自己写的 OpticalNetwork 类继承自 torch.nn。其实现可以单独参照 onn_am.py。类中有三种层:传播层 propagation_layer、调制层 modulation_layer 和成像层 imaging_layer

propagation_layer 模拟光在自由空间中传播一段距离 z 前后的光场变化。作者采用菲涅尔传递函数 (Transmittive Funtion, TF) 法,参照 Computational Fourier Optics 的实现完成 propTF() 函数。经过一个传播层的结果如下所示。

diff

可以看到自由空间传播的卷积效果对图象造成了一定模糊。

菲涅尔传递函数方法可以用角谱法在傍轴近似下保留二阶小量得到。其原理详见 Goodman: Introduction to Fourier Optics, Edition 4th。其实现详见训练所用代码 train.py

modulation_layer 主要引入相位和振幅调制片。调制片与采样空间有着同样的 size。作为唯一可调参数的layer,在定义完各个层之后,相位与振幅调制的参数可以直接调用 loss.backward() 完成计算,使用 optimizer.step() 完成更新。

以下是进行随机相位调制之后再传播 $z$ 距离的光强分布。

mod

imaging_layer 完成成像和输出的任务。在计算总的光强后,imaging_layer 会对每一个方块中的光强大小进行统计并进行归一化,输出一个 dim = 10 的tensor,光强最大的即为预测结果。

举例而言,在下右图中,其对应的tensor为:

0.1584, 0.1126, 0.1083, 0.1370, 0.1285, 0.8973, 0.1393, 0.1145, 0.2016, 0.1920

可以明显看到 tensor[5] 的数值最大,因而5就是我们的预测结果。

入射光场

需要特别注意的是:imaging_layer 中归一化操作不能就地完成,否则梯度计算会出错,需要新定义一个 value_ 数组再return。

最终的模型由

$\rm 5 \times propagation_layer + 5 \times modulation_layer + imaging_layer$

组成。

模型的损失函数使用 MSELoss(),参数初始化方法选择 kaiming_uniform_uniform_,优化器选用 Adam

Parameters

这里是固定参数,此处只列出参数及其代表的含义,其选择原因见"参数的选择原因"

光学参数

M = N = 250     # sampling count on each axis
lmbda = 0.5e-6  # wavelength of coherent light
L = 0.2         # the area to be illuminated
w = 0.051       # the half-width of the light transmission area
z = 100         # the propagation distance in free space

在使用全部MNIST数据进行训练时的神经网络参数为:

learning_rate = 0.003
epochs = 6
batch_size = 128

数据预处理

预处理的相关代码在 prepro.py以及 prepro_label.py 中。其核心在于将图片重新采样,将其大小限制在 $(2w) \times (2w)$ 并嵌套在一个 $L \times L$ 的方形区域内。这样生成所有图片都是 $M \times M$ ,入射光场的形状得以统一。前后对比如下所示。

pre

label的预处理在于把一个数字扩展成一个 dim = 10 的数组。若label = $i$, 则生成单位向量 $e_{i+1}$

预处理完成后保存为npy文件,便于在不同设备上的转移与读取。

数据读取

小批量数据的读取可以直接通过 np.load() 完成,但MNIST的训练数据超出了GPU内存的限制,必须通过dataloader完成。具体代码参照 train.py or train_am.py

模型表现及分析

训练表现

以下结果是没有加入振幅调制,只有振幅调制的结果。加入振幅调制的结果将在下一板块"模型调优"进行讨论。

笔者一开始使用MNIST的前 $2%$ 进行训练与测试,也即 $ \rm 1000 \times train + 200 \times validation + 200 \times test$。

若使用参数

learning_rate = 0.003
epochs = 20
batch_size = 128

一次训练及测试所需的时间大约为50s,方便调参。以下是其中一次的输出结果,其权重保存到了weights_small.pt

Using cuda device
Epoch [1/20], Training Loss: 0.1198, Training Accuracy: 70.10%, 
...
Epoch [20/20], Training Loss: 0.0255, Training Accuracy: 95.90%, 
Validation Loss: 0.0397, Validation Accuracy: 87.50%
Test Accuracy: 90.50%

在小批次数据集上,笔者在测试集上最高达到过92.5%的正确率。平均正确率约为 $91%$

笔者后来使用MNIST的全部进行训练与测试,也即 $ \rm 50000 \times train + 10000 \times validation + 10000 \times test$。使用参数

learning_rate = 0.003
epochs = 6
batch_size = 128

一次训练及测试的结果大约为40min。以下是一次输出的结果,其权重保存到了weights_large.pt中。

Epoch [6/6], Training Loss: 0.0243, Training Accuracy: 92.86%, 
Validation Loss: 0.0225, Validation Accuracy: 93.64%
Test Accuracy: 92.65%

在大批次数据集上的结果,validation set中的正确率超过 $93.5%$, test set中正确率也超过了 $92.5%$ 。不加入振幅调制,原始论文的仿真结果为 $91.75%$。结果相近。

我们列出大批量数据和小批量数据的 confusion_matrix 以作对比。

大批量数据 小批量数据
conf_am conf

结果展示

我们通过列出模型归一化之后的输出结果 output && 入射光场与最终成像光强的对比展示模型的预测表现。

  • 若没有振幅调制
[[0.1320, 0.1467, 0.2757, 0.6138, 0.3394, 0.4097, 0.3318, 0.1327, 0.2697, 0.1574]]

4

[[0.0817, 0.1322, 0.1069, 0.3428, 0.1222, 0.1302, 0.0683, 0.0961, 0.8899, 0.0956]]

contra9

  • 若加入振幅调制:
[[0.0813, 0.1146, 0.2029, 0.3622, 0.7564, 0.1387, 0.0544, 0.0728, 0.2183, 0.4007]]

am_9

[[0.0088, 0.0123, 0.0308, 0.0656, 0.1741, 0.0357, 0.0339, 0.3735, 0.0609, 0.9047]]

7

对比图在 predict.pypredict_am.py 中生成。

运行指南

step1: 预处理

运行 prepro.py & prepro_label.py,生成预处理之后的光场分布并保存为npy文件。注意按照 prepro.py 文件中的提示修改参数。

step2: 模型训练

这里我们提供两种模型:large.py, large_am.py。前者只有相位调制,后者引入了振幅与相位调制。更改文件名与prepro.py中生成的文件名一致。

step3: 模型预测

根据上一步训练的模型种类运行 predict.pypredict_am.py。更改 line 157中的 u0 = test_data_transposed[17] 为你所想要运行的数据。将会生成最终的对比图,如上一板块所示

模型调优

这里我们主要讨论模型架构的优化,参数的优化详见下一章:选择依据。本版块提出四种优化方法:增加层数、加入振幅调制、增加非线性激活函数和改变传播距离。

调整架构,小批次数据全部采用参数lr = 0.003, epoch = 20. 相位初始化使用$(0,4\pi)$中的均匀分布。大批次数据全部采用参数lr = 0.003, epoch = 6. 相位初始化使用$(0,4\pi)$中的均匀分布

增加层数

调整架构中最显而易见的方法就是增加层数。在小批量数据上的实验结果如下所示:

层数 正确率
1 8.5%
2 63.5%
3 87.5%
4 89.0%
5 90.5%
8 92.0%
12 92.5%

可以发现增加层数可以显著增加正确率,但在现实生活中这样更难以制作投入使用,且制造工艺带来的误差可能会增加。5-8层应该是较为合适且折衷的选择。

加入振幅调制

相关代码在所有以 am 结尾的文件中。所有以 am 结尾的文件都代表着有 amplitude modulation

其次是在相位调制之上加入振幅调制。

以下是在MNIST全集上的训练结果。经过对比,加入振幅调制可以较为显著地提高正确率,且没有增加很多训练时间。不过在现实应用中又增加了复杂度。

有振幅调制 无振幅调制
test 93.4% 92.5%
validaiton 93.9% 93.5%
Epoch [6/6], Training Loss: 0.0203, Training Accuracy: 93.64%, 
Validation Loss: 0.0191, Validation Accuracy: 93.86%
Test Accuracy: 93.40%
有振幅调制 无振幅调制
conf_am conf

非线性激活

虽然本模型在传播过程 propagation_layer 中自然引入了一定的非线性因素,但整体实现仍然依赖线性叠加。引入非线性激活函数将对模型产生积极影响。因此本文引入complex ReLU function crelu$^6$,对完成 modulation 的光场进行调节,最终可以达到超过 $97%$ 的正确率。

def crelu(x):
    return torch.relu(x.real) + j * torch.relu(x.imag)

特别需要注意:引入 crelu 后可能使得最后imaging时结果通通为0,若加之以浮点误差则可能使得归一化中的范数计算 norm 出现问题。这时我们可以通过给 norm 一个底线来解决这一问题。代码详见 large_relu.py,将 norm 改为 norm_nonzero 即可。

def norm_nonzero(x):
    # Add a small constant to ensure non-negativity and avoid numerical instability
    epsilon = 1e-10
    return torch.sqrt(torch.clamp(torch.dot(x, x), min=epsilon))
引入relu 不引入relu
test 96.98% 92.5%
validaiton 97.01% 93.5%
Epoch [6/6], Training Loss: 0.0046, Training Accuracy: 98.80%, 
Validation Loss: 0.0059, Validation Accuracy: 97.01%
Test Accuracy: 96.98%

值得记录的是,使用 csigmoid 并不能达到与之相仿佛的效果。说明 sigmoid 作用在complex value上不能通过简单地应用到实部与虚部来完成。

Epoch [1/6], Training Loss: 0.1367, Training Accuracy: 11.36%, 
Validation Loss: 0.1367, Validation Accuracy: 10.64%

这一方法的最大弊端在于其物理实现的困难。目前尚难以找到适合便捷地引入complex activation function的光学介质。$^3$

改变传播距离

相关代码在 changez.py 中。

该思路为改变z,使得z变成一个可以学习的参数。经过小批量数据上的测试,使用过大的学习率会导致z剧烈抖动,正确率在10%上下浮动,如左图;而学习率较小时z几乎不改变,如右图。因此这一改动被放弃。

20 1
lr = 20 lr = 1

使用分布式的计算方式

借鉴卷积神经网络共享权重和偏置的方式,结合到本项目中来的实现方式是增加几个平行的连接层。详情参见large_dn1n_final.py

这个训练实在是太慢了…跑了两次都没跑完。效果也没有太好,说明在该非线性度下,我们已经达到了极致。

示意图:(参照Zhou etc. 2021文章,reconfigurable ONN的灵感)

weights_large_dn1n_feature20.pt
Epoch [4/5], Training Loss: 0.0208, Training Accuracy: 93.37%, 
Validation Loss: 0.0191, Validation Accuracy: 94.05%
Epoch [5/5], Training Loss: 0.0205, Training Accuracy: 93.73%, 
Validation Loss: 0.0187, Validation Accuracy: 93.91%
Test Accuracy: 93.29%

结果:

validation set test set
2 epoches + crelu 96.95% 96.91%
5 epoches 93.91% 93.29%

更换一种传播的仿真方法

使用远距离传输修正的propagation_ASM.py中的方法,训练代码在provided_large.py中。效果没有显著差别。

非相干传播

预测在predict_inco.py中,其中inco代表incoherent,非相干。

训练在large_inco.py中。权重也都公开了。效果上,非相干最好之后58%左右。根据林星老师的看法,这是因为非相干光没有负值运算。

参数的选择依据

光学参数

M = N = 250     # sampling count on each axis
lmbda = 0.5e-6  # wavelength of coherent light
L = 0.2         # the area to be illuminated
w = 0.051       # the half-width of the light transmission area
z = 100         # the propagation distance in free space

参数 $w$ 事先确定,因袭 Computational 书中的选法,而 $L$ 的选择根据 Nyquist law 决定。要模拟现实光学条件,我们要对光场进行合适的采样。采样需要的范围要大于实际光场范围,其扩大的比值设为Q。菲涅尔数 $N_F = w ^2 / (z \times \lambda)$ 我们结合 Goodman: Introduction to Fourier Optics 中的图进行采样,选择Q略小于2。

sample

这边我们的 $M$ 参数的选择有一定瑕疵,如果选的较大一些应该可以更大程度减少混叠 (aliasing) 效果应该更好。但考虑到训练成本、预处理成本均正比于 $M ^ 2$,这里我们使用 $M = 250$ 进行仿真,属于效率与性能的折衷之选。

参数 $z$ 选择是依据前期的传播仿真实验而定。propTF 方法在较小的 $z$ 时有较高的清晰度,$z = 100$ 使得有一定衍射现象的同时不至于使得图象出现重复或大范围的模糊。

神经网络参数

神经网络参数的调整主要依赖实验结果。

特别值得一提的是,论文中给出的 $\rm batch_size = 8$。但作者亲身实践 $\rm batch_size = 8$ 的时候正确率普遍在 80% 上下浮动,并因为这个苦恼许久。在改为128可以突破这一界限,具有较好的效果。

lr 不宜过高或过低。在MNIST全集的条件下,$\rm test_accuracy$ 与 $\rm validation_accuracy $ 基本持平,暂时没有观察到过拟合的现象,说明 $0.003$lr 本身相对较大,起到了一定规范化的作用。

Reference