/data-diff

Efficiently diff rows across two different databases.

Primary LanguagePythonMIT LicenseMIT

data-diff

data-diff is in shape to be run in production, but also under development. If you run into issues, please file an issue and we'll help you out ASAP! You can also find us in #tools-data-diff in the Locally Optimistic Slack.

data-diff is a command-line tool and Python library to efficiently diff rows across two different databases.

  • ⇄ Verifies across many different databases (e.g. PostgreSQL -> Snowflake)
  • πŸ” Outputs diff of rows in detail
  • 🚨 Simple CLI/API to create monitoring and alerts
  • πŸ” Bridges column types of different formats and levels of precision (e.g. Double ⇆ Float ⇆ Decimal)
  • πŸ”₯ Verify 25M+ rows in <10s, and 1B+ rows in ~5min.
  • ♾️ Works for tables with 10s of billions of rows

data-diff splits the table into smaller segments, then checksums each segment in both databases. When the checksums for a segment aren't equal, it will further divide that segment into yet smaller segments, checksumming those until it gets to the differing row(s). See Technical Explanation for more details.

This approach has performance within an order of magnitude of count(*) when there are few/no changes, but is able to output each differing row! By pushing the compute into the databases, it's much faster than querying for and comparing every row.

Performance for 100M rows

†: The implementation for downloading all rows that data-diff and count(*) is compared to is not optimal. It is a single Python multi-threaded process. The performance is fairly driver-specific, e.g. PostgreSQL's performs 10x better than MySQL.

Table of Contents

Common use-cases

  • Verify data migrations. Verify that all data was copied when doing a critical data migration. For example, migrating from Heroku PostgreSQL to Amazon RDS.
  • Verifying data pipelines. Moving data from a relational database to a warehouse/data lake with Fivetran, Airbyte, Debezium, or some other pipeline.
  • Alerting and maintaining data integrity SLOs. You can create and monitor your SLO of e.g. 99.999% data integrity, and alert your team when data is missing.
  • Debugging complex data pipelines. When data gets lost in pipelines that may span a half-dozen systems, without verifying each intermediate datastore it's extremely difficult to track down where a row got lost.
  • Detecting hard deletes for an updated_at-based pipeline. If you're copying data to your warehouse based on an updated_at-style column, then you'll miss hard-deletes that data-diff can find for you.
  • Make your replication self-healing. You can use data-diff to self-heal by using the diff output to write/update rows in the target database.

Example Command and Output

Below we run a comparison with the CLI for 25M rows in PostgreSQL where the right-hand table is missing single row with id=12500048:

$ data-diff \
    postgresql://user:password@localhost/database rating \
    postgresql://user:password@localhost/database rating_del1 \
    --bisection-threshold 100000 \ # for readability, try default first
    --bisection-factor 6 \ # for readability, try default first
    --update-column timestamp \
    --verbose

    # Consider running with --interactive the first time.
    # Runs `EXPLAIN` for you to verify the queries are using indexes.
    # --interactive
[10:15:00] INFO - Diffing tables | segments: 6, bisection threshold: 100000.
[10:15:00] INFO - . Diffing segment 1/6, key-range: 1..4166683, size: 4166682
[10:15:03] INFO - . Diffing segment 2/6, key-range: 4166683..8333365, size: 4166682
[10:15:06] INFO - . Diffing segment 3/6, key-range: 8333365..12500047, size: 4166682
[10:15:09] INFO - . Diffing segment 4/6, key-range: 12500047..16666729, size: 4166682
[10:15:12] INFO - . . Diffing segment 1/6, key-range: 12500047..13194494, size: 694447
[10:15:13] INFO - . . . Diffing segment 1/6, key-range: 12500047..12615788, size: 115741
[10:15:13] INFO - . . . . Diffing segment 1/6, key-range: 12500047..12519337, size: 19290
[10:15:13] INFO - . . . . Diff found 1 different rows.
[10:15:13] INFO - . . . . Diffing segment 2/6, key-range: 12519337..12538627, size: 19290
[10:15:13] INFO - . . . . Diffing segment 3/6, key-range: 12538627..12557917, size: 19290
[10:15:13] INFO - . . . . Diffing segment 4/6, key-range: 12557917..12577207, size: 19290
[10:15:13] INFO - . . . . Diffing segment 5/6, key-range: 12577207..12596497, size: 19290
[10:15:13] INFO - . . . . Diffing segment 6/6, key-range: 12596497..12615788, size: 19291
[10:15:13] INFO - . . . Diffing segment 2/6, key-range: 12615788..12731529, size: 115741
[10:15:13] INFO - . . . Diffing segment 3/6, key-range: 12731529..12847270, size: 115741
[10:15:13] INFO - . . . Diffing segment 4/6, key-range: 12847270..12963011, size: 115741
[10:15:14] INFO - . . . Diffing segment 5/6, key-range: 12963011..13078752, size: 115741
[10:15:14] INFO - . . . Diffing segment 6/6, key-range: 13078752..13194494, size: 115742
[10:15:14] INFO - . . Diffing segment 2/6, key-range: 13194494..13888941, size: 694447
[10:15:14] INFO - . . Diffing segment 3/6, key-range: 13888941..14583388, size: 694447
[10:15:15] INFO - . . Diffing segment 4/6, key-range: 14583388..15277835, size: 694447
[10:15:15] INFO - . . Diffing segment 5/6, key-range: 15277835..15972282, size: 694447
[10:15:15] INFO - . . Diffing segment 6/6, key-range: 15972282..16666729, size: 694447
+ (12500048, 1268104625)
[10:15:16] INFO - . Diffing segment 5/6, key-range: 16666729..20833411, size: 4166682
[10:15:19] INFO - . Diffing segment 6/6, key-range: 20833411..25000096, size: 4166685

Supported Databases

Database Connection string Status
PostgreSQL postgresql://<user>:<password>@<hostname>:5432/<database> πŸ’š
MySQL mysql://<user>:<password>@<hostname>:5432/<database> πŸ’š
Snowflake "snowflake://<user>:<password>@<account>/<database>/<SCHEMA>?warehouse=<WAREHOUSE>&role=<role>" πŸ’š
Oracle oracle://<username>:<password>@<hostname>/database πŸ’›
BigQuery bigquery://<project>/<dataset> πŸ’›
Redshift redshift://<username>:<password>@<hostname>:5439/<database> πŸ’›
Presto presto://<username>:<password>@<hostname>:8080/<database> πŸ’›
ElasticSearch πŸ“
Databricks πŸ“
Planetscale πŸ“
Clickhouse πŸ“
Pinot πŸ“
Druid πŸ“
Kafka πŸ“
  • πŸ’š: Implemented and thoroughly tested.
  • πŸ’›: Implemented, but not thoroughly tested yet.
  • ⏳: Implementation in progress.
  • πŸ“: Implementation planned. Contributions welcome.

If a database is not on the list, we'd still love to support it. Open an issue to discuss it.

How to install

Requires Python 3.7+ with pip.

pip install data-diff

Install drivers

To connect to a database, we need to have its driver installed, in the form of a Python library.

While you may install them manually, we offer an easy way to install them along with data-diff:

Users can also install several drivers at once:

pip install 'data-diff[mysql,postgresql,snowflake]'

How to use

How to use from the command-line

Usage: data-diff DB1_URI TABLE1_NAME DB2_URI TABLE2_NAME [OPTIONS]

See the example command and the sample connection strings.

Note that for some databases, the arguments that you enter in the command line may be case-sensitive. This is the case for the Snowflake schema and table names.

Options:

  • --help - Show help message and exit.
  • -k or --key-column - Name of the primary key column
  • -t or --update-column - Name of updated_at/last_updated column
  • -c or --columns - List of names of extra columns to compare
  • -l or --limit - Maximum number of differences to find (limits maximum bandwidth and runtime)
  • -s or --stats - Print stats instead of a detailed diff
  • -d or --debug - Print debug info
  • -v or --verbose - Print extra info
  • -i or --interactive - Confirm queries, implies --debug
  • --json - Print JSONL output for machine readability
  • --min-age - Considers only rows older than specified. Useful for specifying replication lag. Example: --min-age=5min ignores rows from the last 5 minutes. Valid units: d, days, h, hours, min, minutes, mon, months, s, seconds, w, weeks, y, years
  • --max-age - Considers only rows younger than specified. See --min-age.
  • --bisection-factor - Segments per iteration. When set to 2, it performs binary search.
  • --bisection-threshold - Minimal bisection threshold. i.e. maximum size of pages to diff locally.
  • -j or --threads - Number of worker threads to use per database. Default=1.

How to use from Python

API reference: https://data-diff.readthedocs.io/en/latest/

Example:

# Optional: Set logging to display the progress of the diff
import logging
logging.basicConfig(level=logging.INFO)

from data_diff import connect_to_table, diff_tables

table1 = connect_to_table("postgresql:///", "table_name", "id")
table2 = connect_to_table("mysql:///", "table_name", "id")

for different_row in diff_tables(table1, table2):
    plus_or_minus, columns = different_row
    print(plus_or_minus, columns)

Run help(diff_tables) or read the docs to learn about the different options.

Technical Explanation

In this section we'll be doing a walk-through of exactly how data-diff works, and how to tune --bisection-factor and --bisection-threshold.

Let's consider a scenario with an orders table with 1M rows. Fivetran is replicating it contionously from PostgreSQL to Snowflake:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                        β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ PostgreSQL  β”‚                        β”‚  Snowflake  β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€                        β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚             β”‚                        β”‚             β”‚
β”‚             β”‚                        β”‚             β”‚
β”‚             β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”       β”‚ table with  β”‚
β”‚ table with  β”œβ”€β”€β”€ replication β”œβ”€β”€β”€β”€β”€β”€β–Άβ”‚ ?maybe? all β”‚
β”‚lots of rows!β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜       β”‚  the same   β”‚
β”‚             β”‚                        β”‚    rows.    β”‚
β”‚             β”‚                        β”‚             β”‚
β”‚             β”‚                        β”‚             β”‚
β”‚             β”‚                        β”‚             β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                        β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

In order to check whether the two tables are the same, data-diff splits the table into --bisection-factor=10 segments.

We also have to choose which columns we want to checksum. In our case, we care about the primary key, --key-column=id and the update column --update-column=updated_at. updated_at is updated every time the row is, and we have an index on it.

data-diff starts by querying both databases for the min(id) and max(id) of the table. Then it splits the table into --bisection-factor=10 segments of 1M/10 = 100K keys each:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”              β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚     PostgreSQL       β”‚              β”‚      Snowflake       β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€              β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚      id=1..100k      β”‚              β”‚      id=1..100k      β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€              β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚    id=100k..200k     β”‚              β”‚    id=100k..200k     β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€              β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚    id=200k..300k     β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Άβ”‚    id=200k..300k     β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€              β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚    id=300k..400k     β”‚              β”‚    id=300k..400k     β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€              β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚         ...          β”‚              β”‚         ...          β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€              β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚      900k..100k      β”‚              β”‚      900k..100k      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–²β”€β”€β”˜              β””β–²β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                    ┃                  ┃
                    ┃                  ┃
                    ┃ checksum queries ┃
                    ┃                  ┃
                  β”Œβ”€β”»β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”»β”€β”€β”€β”€β”
                  β”‚        data-diff        β”‚
                  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Now data-diff will start running --threads=1 queries in parallel that checksum each segment. The queries for checksumming each segment will look something like this, depending on the database:

SELECT count(*),
    sum(cast(conv(substring(md5(concat(cast(id as char), cast(timestamp as char))), 18), 16, 10) as unsigned))
FROM `rating_del1`
WHERE (id >= 1) AND (id < 100000)

This keeps the amount of data that has to be transferred between the databases to a minimum, making it very performant! Additionally, if you have an index on updated_at (highly recommended) then the query will be fast as the database only has to do a partial index scan between id=1..100k.

If you are not sure whether the queries are using an index, you can run it with --interactive. This puts data-diff in interactive mode where it shows an EXPLAIN before executing each query, requiring confirmation to proceed.

After running the checksum queries on both sides, we see that all segments are the same except id=100k..200k:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”              β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚     PostgreSQL       β”‚              β”‚      Snowflake       β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€              β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚    checksum=0102     β”‚              β”‚    checksum=0102     β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€   mismatch!  β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚    checksum=ffff     ◀──────────────▢    checksum=aaab     β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€              β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚    checksum=abab     β”‚              β”‚    checksum=abab     β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€              β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚    checksum=f0f0     β”‚              β”‚    checksum=f0f0     β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€              β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚         ...          β”‚              β”‚         ...          β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€              β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚    checksum=9494     β”‚              β”‚    checksum=9494     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜              β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Now data-diff will do exactly as it just did for the whole table for only this segment: Split it into --bisection-factor segments.

However, this time, because each segment has 100k/10=10k entries, which is less than the --bisection-threshold it will pull down every row in the segment and compare them in memory in data-diff.

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”              β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚     PostgreSQL       β”‚              β”‚      Snowflake       β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€              β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚    id=100k..110k     β”‚              β”‚    id=100k..110k     β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€              β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚    id=110k..120k     β”‚              β”‚    id=110k..120k     β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€              β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚    id=120k..130k     β”‚              β”‚    id=120k..130k     β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€              β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚    id=130k..140k     β”‚              β”‚    id=130k..140k     β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€              β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚         ...          β”‚              β”‚         ...          β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€              β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚      190k..200k      β”‚              β”‚      190k..200k      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜              β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Finally data-diff will output the (id, updated_at) for each row that was different:

(122001, 1653672821)

If you pass --stats you'll see e.g. what % of rows were different.

Performance Considerations

  • Ensure that you have indexes on the columns you are comparing. Preferably a compound index. You can run with --interactive to see an EXPLAIN for the queries.
  • Consider increasing the number of simultaneous threads executing queries per database with --threads. For databases that limit concurrency per query, e.g. PostgreSQL/MySQL, this can improve performance dramatically.
  • If you are only interested in whether something changed, pass --limit 1. This can be useful if changes are very rare. This is often faster than doing a count(*), for the reason mentioned above.
  • If the table is very large, consider a larger --bisection-factor. Explained in the technical explanation. Otherwise you may run into timeouts.
  • If there are a lot of changes, consider a larger --bisection-threshold. Explained in the technical explanation.
  • If there are very large gaps in your key column, e.g. 10s of millions of continuous rows missing, then data-diff may perform poorly doing lots of queries for ranges of rows that do not exist (see technical explanation). We have ideas on how to tackle this issue, which we have yet to implement. If you're experiencing this effect, please open an issue and we will prioritize it.
  • The fewer columns you verify (passed with --columns), the faster data-diff will be. On one extreme you can verify every column, on the other you can verify only updated_at, if you trust it enough. You can also only verify id if you're interested in only presence, e.g. to detect missing hard deletes. You can do also do a hybrid where you verify updated_at and the most critical value, e.g a money value in amount but not verify a large serialized column like json_settings.
  • We have ideas for making data-diff even faster that we haven't implemented yet: faster checksums by reducing type-casts and using a faster hash than MD5, dynamic adaptation of bisection_factor/threads/bisection_threshold (especially with large key gaps), and improvements to bypass Python/driver performance limitations when comparing huge amounts of rows locally (i.e. for very high bisection_threshold values).

Development Setup

The development setup centers around using docker-compose to boot up various databases, and then inserting data into them.

For Mac for performance of Docker, we suggest enabling in the UI:

  • Use new Virtualization Framework
  • Enable VirtioFS accelerated directory sharing

1. Install Data Diff

When developing/debugging, it's recommended to install dependencies and run it directly with poetry rather than go through the package.

$ brew install mysql postgresql # MacOS dependencies for C bindings
$ apt-get install libpq-dev libmysqlclient-dev # Debian dependencies

$ pip install poetry # Python dependency isolation tool
$ poetry install # Install dependencies

2. Start Databases

Install docker-compose if you haven't already.

$ docker-compose up -d mysql postgres # run mysql and postgres dbs in background

3. Run Unit Tests

$ poetry run python3 -m unittest

4. Seed the Database(s)

First, download the CSVs of seeding data:

$ curl https://datafold-public.s3.us-west-2.amazonaws.com/1m.csv -o dev/ratings.csv

# For a larger data-set (but takes 25x longer to import):
# - curl https://datafold-public.s3.us-west-2.amazonaws.com/25m.csv -o dev/ratings.csv

Now you can insert it into the testing database(s):

# It's optional to seed more than one to run data-diff(1) against.
$ poetry run preql -f dev/prepare_db.pql mysql://mysql:Password1@127.0.0.1:3306/mysql
$ poetry run preql -f dev/prepare_db.pql postgresql://postgres:Password1@127.0.0.1:5432/postgres

# Cloud databases
$ poetry run preql -f dev/prepare_db.pql snowflake://<uri>
$ poetry run preql -f dev/prepare_db.pql mssql://<uri>
$ poetry run preql -f dev/prepare_db.pql bigquery:///<project>

5. Run data-diff against seeded database

poetry run python3 -m data_diff postgresql://postgres:Password1@localhost/postgres rating postgresql://postgres:Password1@localhost/postgres rating_del1 --verbose

License

MIT License