MTEval
- Collection of evaluation metrics and algorithms for machine translation.
This software inplements some major machine translation evaluation metrics and evaluation algorithms to be easily used.
If you used MTEval
toolkit, please refer this software on your document with below link:
MTEval
depends on below libraries:
Boost 1.48
or later $ sudo apt-get install libboost-all-dev
And uses below toolkit to build libraries and executalbes:
CMake 3.1.0
or later $ sudo apt-get install cmake
First, we make a root directory of the build tree:
$ cd /path/to/mteval
$ mkdir build
$ cd build
Then we build the tool:
$ cmake ..
$ make -j <threads>
And optionally you can run unit tests:
$ make test
All executables (see next section) are stored in the build/bin
directory.
To execute mteval
commands from anywhere (without pointing to the build directory)
create symbolic link of the compiled binaries in the local bin
folder:
$ cd /usr/local/bin
$ sudo ln -s /path/to/mteval/build/bin/mteval-* .
MTEval currently have 3 executables:
mteval-corpus
- corpus-wise evaluationmteval-sentence
- sentence-wise evaluationmteval-pairwise
- pairwise bootstrap resampling
mteval-corpus
and mteval-sentence
requires 1 reference and 1 hypothesis corpus
to compute the goodness of the hypothesis.
mteval-pairwise
requires 1 reference and 2 hypothesis corpus
to compute statistical significance of 1st hypothesis against 2nd hypothesis.
For example, we use a small example set described below:
data/ref:
a b c d e
a b c d e
a b c d e
a b c d e
data/hyp1:
a b c d e
a b c d e f
a c d e
a b x d e
data/hyp2:
a b c d e
a b c d e f g
a b c d e
a b x d e
Then, we type below example commands and get results
(do cd /path/to/mteval/build/bin
first if mteval
has not added to bin path):
$ mteval-corpus -e BLEU RIBES -r data/ref -h data/hyp1
BLEU=0.666113 RIBES=0.969124
$ mteval-sentence -e BLEU RIBES -r data/ref -h data/hyp1
BLEU=1.000000 RIBES=1.000000
BLEU=0.759836 RIBES=0.955443
BLEU=0.000000 RIBES=0.975310
BLEU=0.000000 RIBES=0.945742
$ build/bin/mteval-pairwise -i 1000 -s 100 -e BLEU RIBES -r data/ref -h data/hyp{1,2}
BLEU: p=0.986000 (14/1000) RIBES: p=0.089000 (911/1000)
(Note that results of mteval-pairwise
changes randomly with a certain range)
Some evaluation metrics have parameters (e.g. maximum n-gram, or smoothing for BLEU).
You may set these parameters using :param=value
notation:
$ mteval-corpus -e BLEU:ngram=5:smooth=1 -r data/ref -h data/hyp1
BLEU=0.676009
$ mteval-corpus -e BLEU:smooth=1 -r data/ref -h data/hyp1
BLEU=0.696471
Omitted parameters are assumed as default value.
If you need to obtain inner statistics of each evaluation metrics,
you can use --output-stats
option for mteval-corpus
and mteval-sentence
:
$ mteval-corpus --output-stats -e BLEU -r data/ref -h data/hyp1 \
| tr '\t' '\n'
BLEU=0.666113
BLEU:len:hyp=20
BLEU:len:ref=20
BLEU:ngram:1:hyp=20
BLEU:ngram:1:match=18
BLEU:ngram:2:hyp=16
BLEU:ngram:2:match=12
BLEU:ngram:3:hyp=12
BLEU:ngram:3:match=7
BLEU:ngram:4:hyp=8
BLEU:ngram:4:match=4
BLEU:samples=4
Type mteval-*** --help
to see more information for each command.
-
BLEU
- Identifier:
BLEU
- Parameters:
ngram
: maximum n-gram length (default:4
)smooth
: additional counts for >1-gram (default:0
)
- Statistics:
len:hyp
: number of words in hypothesis sentences.len:ref
: number of words in reference sentences.ngram:%d:hyp
: number of n-grams in the hypothesis sentence.ngram:%d:match
: number of matched n-grams.samples
: number of evaluation samples.
- Identifier:
-
NIST
- Identifier:
NIST
- Parameters:
ngram
: maximum n-gram length (default:5
)
- Statistics:
len:hyp
: number of words in hypothesis sentences.len:ref
: number of words in reference sentences.ngram:%d:hyp
: number of n-grams in the hypothesis sentence.ngram:%d:match
: cumulative weighted n-gram matches.samples
: number of evaluation samples.
- Identifier:
-
RIBES
- Identifier:
RIBES
- Parameters:
alpha
: weight of unigram precision (default:0.25
)beta
: weight of brevity penalty (default:0.1
)
- Statistics:
brevity
: cumulative brevity penalty for each evaluation sample.nkt
: cumulative Kendall's tau for each evaluation sample.prec
: cumulative unigram precision for each evaluation sample.samples
: number of evaluation samples.score
: cumulative RIBES score for each evaluation sample.
- Identifier:
-
Word Error Rate
- Identifier:
WER
- Parameters:
substitute
: weight of substituting ref/hyp words (default:1.0
)insert
: weight of inserting a hyp word (default:1.0
)delete
: weight of deleting a hyp word (default:1.0
)
- Statistics:
distance
: cumulative Levenshtein distance for each evaluation sample.samples
: number of evaluation samples.score
: cumulative WER score for each evaluation sample.
- Identifier:
- Yusuke Oda (@odashi) - Most coding
We are counting more contributions from you.
If you find an issue, please contact Y.Oda
- @odashi_t on Twitter (faster than E-Mail)
- yus.takara (at) gmail.com