/uaa

CloudFoundry User Account and Authentication (UAA) Server

Primary LanguageJavaApache License 2.0Apache-2.0

CloudFoundry User Account and Authentication (UAA) Server

Build Status

The UAA is a multi tenant identity management service, used in Cloud Foundry, but also available as a stand alone OAuth2 server. It's primary role is as an OAuth2 provider, issuing tokens for client applications to use when they act on behalf of Cloud Foundry users. It can also authenticate users with their Cloud Foundry credentials, and can act as an SSO service using those credentials (or others). It has endpoints for managing user accounts and for registering OAuth2 clients, as well as various other management functions.

Co-ordinates

Quick Start

Requirements:

  • Java 8

If this works you are in business:

$ git clone git://github.com/cloudfoundry/uaa.git
$ cd uaa
$ ./gradlew run

NOTE: Recent changes removed default keys and default users from the UAA. We currently enable default keys using the LOGIN_CONFIG_URL variable and load default sample data is loaded using the default spring profile (spring.profiles.active). In the gradle script we set LOGIN_CONFIG_URL=file://$PWD/uaa/src/main/resources/required_configuration.yml

The apps all work together with the apps running on the same port (8080) as /uaa, /app and /api.

UAA will log to a file called uaa.log which can be found using the following command:-

$ sudo find / -name uaa.log

which you should find under something like:-

/private/var/folders/7v/518b18d97_3f4c8fzxphy6f8zcm51c/T/cargo/conf/logs/

Deploy to Cloud Foundry

Currently you are also required to set the following values that are not included with the defaults: https://github.com/cloudfoundry/uaa/blob/master/uaa/src/main/resources/required_configuration.yml

You can also build the app and push it to Cloud Foundry, e.g. Our recommended way is to use a manifest file, but you can do everything on the command line.

Assuming we have a local bosh-lite instance running you could do

$ ./gradlew manifests
$ cf api --skip-ssl-validation api.bosh-lite.com
$ cf auth admin admin
$ cf create-org sample-org
$ cf create-space -o sample-org sample-space
$ cf target -o sample-org -s sample-space
$ cf push -f build/sample-manifests/uaa-cf-application.yml

Your application is now available on http://myuaa.bosh-lite.com

We can also deploy to Pivotal Web Services

$ ./gradlew manifests -Dapp=myuaa-app -Dapp-domain=cfapps.io
$ cf api api.run.pivotal.io
$ cf auth <your username> <your password>
$ cf create-org <your org>
$ cf create-space -o <your org> <your space>
$ cf target -o <your org> -s <your space>
$ cf push -f build/sample-manifests/uaa-cf-application.yml

Demo of command line usage on local server

First run the UAA server as described above:

$ ./gradlew run

From another terminal you can use curl to verify that UAA has started by requesting system information:

$ curl -H "Accept: application/json" localhost:8080/uaa/login
{
  "timestamp":"2012-03-28T18:25:49+0100",
  "commit_id":"111274e",
  "prompts":{"username":["text","Username"],
    "password":["password","Password"]
  }
}

For complex requests it is more convenient to interact with UAA using uaac, the UAA Command Line Client. If you have a recent ruby installed, install the CLI and use it to obtain an access token:

$ gem install cf-uaac
$ uaac target http://localhost:8080/uaa
$ uaac token owner get cf marissa -s "" -p koala

If you omit the username or password the CLI will prompt you for those fields.

This authenticates and obtains an access token from the server using the OAuth2 implicit grant, similar to the approach intended for a client like CF. The token is stored in ~/.uaac.yml, so dig into that file and pull out the access token for your cf target (or use --verbose on the login command line above to see it logged to your console).

Then you can login as a resource server and retrieve the token details:

$ uaac target http://localhost:8080/uaa
$ uaac token decode

You should see your username and the client id of the original token grant on stdout, e.g.

  exp: 1355348409
  user_name: marissa
  scope: cloud_controller.read openid password.write scim.userids tokens.read tokens.write
  email: marissa@test.org
  aud: scim tokens openid cloud_controller password
  jti: ea2fac72-3f51-4c8f-a7a6-5ffc117af542
  user_id: ba14fea0-9d87-4f0c-b59e-32aaa8eb1434
  client_id: cf

Running local system against default MySQL and PostgreSQL settings (and Flyway migration script information)

$ ./gradlew -Dspring.profiles.active=default,mysql run

This command will assume that there is a MySQL database available with the default settings for access and will respond to the following JDBC settings.

driver = 'org.mariadb.jdbc.Driver'
url = 'jdbc:mysql://localhost:3306/uaa'
user = 'root'
password = 'changeme'
schemas = ['uaa']

In a similar fashion, should you execute the command

$ ./gradlew -Dspring.profiles.active=default,postgresql run

It uses the settings defined as

driver = 'org.postgresql.Driver'
url = 'jdbc:postgresql:uaa'
user = 'root'
password = 'changeme'

These settings are duplicated in two places for the Gradle integration. They are defined as defaults in the Spring XML configuration files and they are defined in the main build.gradle file. The reason they are in the Gradle build file, is so that during Gradle always executes the flywayClean task prior to launching the UAA application. If you wish to not clean the DB, you can define the variable

-Dflyway.clean=false

as part of your command line. This disables the flywayClean task in the gradle script. Another way to disable to the flywayClean is to not specify the spring profiles on the command line, but set the profiles in the uaa.yml and login.yml files.

Demo of command line usage on run.pivotal.io

The same command line example should work against a UAA running on run.pivotal.io (except for the token decoding bit because you won't have the client secret). In this case, there is no need to run a local uaa server, so simply ask the external login endpoint to tell you about the system:

$ curl -H "Accept: application/json" login.run.pivotal.io
{
  "prompts":{"username":["text","Username"],
    "password":["password","Password"]
  }
}

You can then try logging in with the UAA ruby gem. Make sure you have ruby 1.9, then

$ gem install cf-uaac
$ uaac target uaa.run.pivotal.io
$ uaac token get [yourusername] [yourpassword]

(or leave out the username / password to be prompted).

This authenticates and obtains an access token from the server using the OAuth2 implicit grant, the same as used by a client like CF.

Integration tests

You can run the integration tests with docker

$ ~/workspace/uaa/run-integration-tests.sh mysql
$ ~/workspace/uaa/run-integration-tests.sh postgresql
$ ~/workspace/uaa/run-integration-tests.sh sqlserver

will create a docker container running uaa + ldap + database whereby integration tests are run against.

Custom YAML Configuration

To modify the runtime parameters you can provide a uaa.yml, e.g.

$ cat > /tmp/config/uaa.yml
uaa:
  host: uaa.appcloud21.dev.mozycloud
  test:
    username: dev@cloudfoundry.org # defaults to vcap_tester@vmware.com
    password: changeme
    email: dev@cloudfoundry.org

then from uaa/uaa

$ CLOUD_FOUNDRY_CONFIG_PATH=/tmp/config ./gradlew test

The webapp looks for Yaml content in the following locations (later entries override earlier ones) when it starts up.

classpath:uaa.yml
file:${CLOUD_FOUNDRY_CONFIG_PATH}/uaa.yml
file:${UAA_CONFIG_FILE}
${UAA_CONFIG_URL}
System.getEnv('UAA_CONFIG_YAML') -> environment variable, if set must contain valid Yaml

For example, to deploy the UAA as a Cloud Foundry application, you can provide an application manifest like

---
  applications:
  - name: standalone-uaa-cf-war
    memory: 1024M
    instances: 1
    host: standalone-uaa
    path: cloudfoundry-identity-uaa-<YOUR-VERSION-HERE>.war
    env:
      JBP_CONFIG_SPRING_AUTO_RECONFIGURATION: '[enabled: false]'
      JBP_CONFIG_TOMCAT: '{tomcat: { version: 7.0.+ }}'
      SPRING_PROFILES_ACTIVE: hsqldb,default
      UAA_CONFIG_YAML: |
        uaa.url: http://standalone-uaa.cfapps.io
        login.url: http://standalone-uaa.cfapps.io
        smtp:
          host: mail.server.host
          port: 3535

Or as an alternative, set the yaml configuration as a string for an environment variable using the set-env command

cf set-env sample-uaa-cf-war UAA_CONFIG_YAML '{ uaa.url: http://standalone-uaa.myapp.com, login.url: http://standalone-uaa.myapp.com, smtp: { host: mail.server.host, port: 3535 } }'

In addition, any simple type property that is read by the UAA can also be fully expanded and read as a system environment variable itself. Notice how uaa.url can be converted into an environment variable called UAA_URL

---
  applications:
  - name: standalone-uaa-cf-war
    memory: 1024M
    instances: 1
    host: standalone-uaa
    path: cloudfoundry-identity-uaa-<YOUR-VERSION-HERE>.war
    env:
      JBP_CONFIG_SPRING_AUTO_RECONFIGURATION: '[enabled: false]'
      JBP_CONFIG_TOMCAT: '{tomcat: { version: 7.0.+ }}'
      SPRING_PROFILES_ACTIVE: hsqldb,default
      UAA_URL: http://standalone-uaa.cfapps.io
      LOGIN_URL: http://standalone-uaa.cfapps.io
      UAA_CONFIG_YAML: |
        smtp:
          host: mail.server.host
          port: 3535

Using Gradle to test with postgresql or mysql

The default uaa unit tests (./gradlew test integrationTest) use hsqldb.

To run the unit tests with docker:

$ ~/workspace/uaa/run-unit-tests.sh mysql
$ ~/workspace/uaa/run-unit-tests.sh postgresql
$ ~/workspace/uaa/run-unit-tests.sh sqlserver

Inventory

There are actually several projects here, the main uaa server application, a client library and some samples:

  1. uaa a WAR project for easy deployment

  2. server a JAR project containing the implementation of UAA's REST API (including SCIM) and UI

  3. model a JAR project used by both the client library and server

  4. client-lib a JAR project that provides a Java client API

  5. api (sample) is an OAuth2 resource service which returns a mock list of deployed apps

  6. app (sample) is a user application that uses both of the above

In CloudFoundry terms

  • uaa provides an authentication service plus authorized delegation for back-end services and apps (by issuing OAuth2 access tokens).

  • api is a service that provides resources that other applications may wish to access on behalf of the resource owner (the end user).

  • app is a webapp that needs single sign on and access to the api service on behalf of users.

Organization of Code

The projects are organized into horizontal layers; client, model, server, etc. Within all of these projects the java packages are organized vertically around our internal services; zones, providers, clients, etc.

UAA Server

The authentication service is uaa. It's a plain Spring MVC webapp. Deploy as normal in Tomcat or your container of choice, or execute ./gradlew run to run it directly from uaa directory in the source tree. When running with gradle it listens on port 8080 and the URL is http://localhost:8080/uaa

The UAA Server supports the APIs defined in the UAA-APIs document. To summarise:

  1. The OAuth2 /oauth/authorize and /oauth/token endpoints

  2. A /login_info endpoint to allow querying for required login prompts

  3. A /check_token endpoint, to allow resource servers to obtain information about an access token submitted by an OAuth2 client.

  4. A /token_key endpoint, to allow resource servers to obtain the verification key to verify token signatures

  5. SCIM user provisioning endpoint

  6. OpenID connect endpoints to support authentication /userinfo. Partial OpenID support.

Authentication can be performed by command line clients by submitting credentials directly to the /oauth/authorize endpoint (as described in UAA-API doc). There is an ImplicitAccessTokenProvider in Spring Security OAuth that can do the heavy lifting if your client is Java.

By default uaa will launch with a context root /uaa.

Use Cases

  1. Authenticate

     GET /login
    

    A basic form login interface.

  2. Approve OAuth2 token grant

     GET /oauth/authorize?client_id=app&response_type=code...
    

    Standard OAuth2 Authorization Endpoint.

  3. Obtain access token

     POST /oauth/token
    

    Standard OAuth2 Authorization Endpoint.

Configuration

There are two configuration files, uaa.yml and login.yml, in the application which provides defaults to the placeholders in the Spring XML.
Wherever you see ${placeholder.name} in the XML there is an opportunity to override it either by providing a System property (-D to JVM) with the same name, or a custom uaa.yml or login.yml (as described above).

The uaa.yml and login.yml get merged during startup into one configuration.

All passwords and client secrets in the config files are plain text, but they will be inserted into the UAA database encrypted with BCrypt.

In the future, you will be able to provide passwords in bcrypt format to avoid having to specify clear text passwords.

User Account Data

The default is to use an in-memory RDBMS user store that is pre-populated with a single test users: marissa has password koala.

To use Postgresql for user data, activate the Spring profile postgresql.

The active profiles can be configured in uaa.yml using

spring_profiles: postgresql,default

Or specify PostgreSQL on the command line:

 $ ./gradlew -Dspring.profiles.active=default,postgresql run

The API Sample Application

Two sample applications are included with the UAA. The /api and /app

Run it using ./gradlew run from the uaa root directory All three apps, /uaa, /api and /app get deployed simultaneously.

The App Sample Application

This is a user interface app (primarily aimed at browsers) that uses OpenId Connect for authentication (i.e. SSO) and OAuth2 for access grants. It authenticates with the Auth service, and then accesses resources in the API service. Run it with ./gradlew run from the uaa root directory.

The application can operate in multiple different profiles according to the location (and presence) of the UAA server and the Login application. By default it will look for a UAA on localhost:8080/uaa, but you can change this by setting an environment variable (or System property) called UAA_PROFILE. In the application source code (samples/app/src/main/resources) you will find multiple properties files pre-configured with different likely locations for those servers. They are all in the form application-<UAA_PROFILE>.properties and the naming convention adopted is that the UAA_PROFILE is local for the localhost deployment, vcap for a vcap.me deployment, staging for a staging deployment (inside VMware VPN), etc. The profile names are double barrelled (e.g. local-vcap when the login server is in a different location than the UAA server).

Use Cases

  1. See all apps

     GET /app/apps
    

    browser is redirected through a series of authentication and access grant steps (which could be slimmed down to implicit steps not requiring user at some point), and then the list of apps is shown.

  2. See the currently logged in user details, a bag of attributes grabbed from the open id provider

     GET /app
    

Contributing to the UAA

Here are some ways for you to get involved in the community:

  • The UAA has three requirements

    • JDK 1.8.0
    • ChromeDriver, for integration test.
    • Allow a key strength of 256bit by modifying /Library/Java/JavaVirtualMachines/jdk1.8.0_151.jdk/Contents/Home/jre/lib/security/java.security
      • change #crypto.policy=unlimited to crypto.policy=unlimited
  • Get involved with the Cloud Foundry community on the mailing lists. Please help out on the mailing list by responding to questions and joining the debate.

  • Create github tickets for bugs and new features and comment and vote on the ones that you are interested in.

  • Github is for social coding: if you want to write code, we encourage contributions through pull requests from forks of this repository. If you want to contribute code this way, please reference an existing issue if there is one as well covering the specific issue you are addressing. Always submit pull requests to the "develop" branch. We strictly adhere to test driven development. We kindly ask that pull requests are accompanied with test cases that would be failing if ran separately from the pull request.

  • Watch for upcoming articles on Cloud Foundry by subscribing to the cloudfoundry.org blog

Acknowledgements

  • YourKit supports open source projects with its full-featured Java Profiler. YourKit, LLC is the creator of YourKit Java Profiler and YourKit .NET Profiler, innovative and intelligent tools for profiling Java and .NET applications.