/nn

Primary LanguageLua

# Neural Network Package #

This package provides an easy way to build and train simple or complex neural networks.

Each module of a network is composed of Modules and there are several sub-classes of Module available: container classes like Sequential, Parallel and Concat , which can contain simple layers like Linear, Mean, Max and Reshape, as well as convolutional layers, and transfer functions like Tanh.

Loss functions are implemented as sub-classes of Criterion. They are helpful to train neural network on classical tasks. Common criterions are the Mean Squared Error criterion implemented in MSECriterion and the cross-entropy criterion implemented in ClassNLLCriterion.

Finally, the StochasticGradient class provides a high level way to train the neural network of choice, even though it is easy with a simple for loop to train a neural network yourself.

For those who want to implement their own modules, we suggest using the nn.Jacobian class for testing the derivatives of their class, together with the torch.Tester class. The sources of nn package contains sufficiently many examples of such tests.

# Detailed Overview of the Neural Network Package #

Module

A neural network is called a Module (or simply module in this documentation) in Torch. Module is an abstract class which defines four main methods:

It also declares two members:

  • output which is the output returned by forward().
  • gradInput which contains the gradients with respect to the input of the module, computed in a backward().

Two other perhaps less used but handy methods are also defined:

  • share(mlp,s1,s2,...,sn) which makes this module share the parameters s1,..sn of the module mlp. This is useful if you want to have modules that share the same weights.
  • clone(...) which produces a deep copy of (i.e. not just a pointer to) this Module, including the current state of its parameters (if any).

Some important remarks:

Plug and play

Building a simple neural network can be achieved by constructing an available layer. A linear neural network (perceptron!) is built only in one line:

mlp = nn.Linear(10,1) -- perceptron with 10 inputs

More complex neural networks are easily built using container classes Sequential and Concat. Sequential plugs layer in a feed-forward fully connected manner. Concat concatenates in one layer several modules: they take the same inputs, and their output is concatenated.

Creating a one hidden-layer multi-layer perceptron is thus just as easy as:

mlp = nn.Sequential()
mlp:add( nn.Linear(10, 25) ) -- 10 input, 25 hidden units
mlp:add( nn.Tanh() ) -- some hyperbolic tangent transfer function
mlp:add( nn.Linear(25, 1) ) -- 1 output

Of course, Sequential and Concat can contains other Sequential or Concat, allowing you to try the craziest neural networks you ever dreamt of! See the [[#nn.Modules|complete list of available modules]].

Training a neural network

Once you built your neural network, you have to choose a particular Criterion to train it. A criterion is a class which describes the cost to be minimized during training.

You can then train the neural network by using the StochasticGradient class.

 criterion = nn.MSECriterion() -- Mean Squared Error criterion
 trainer = nn.StochasticGradient(mlp, criterion)
 trainer:train(dataset) -- train using some examples

StochasticGradient expect as a dataset an object which implements the operator dataset[index] and implements the method dataset:size(). The size() methods returns the number of examples and dataset[i] has to return the i-th example.

An example has to be an object which implements the operator example[field], where field might take the value 1 (input features) or 2 (corresponding label which will be given to the criterion). The input is usually a Tensor (except if you use special kind of gradient modules, like table layers). The label type depends of the criterion. For example, the MSECriterion expect a Tensor, but the ClassNLLCriterion except a integer number (the class).

Such a dataset is easily constructed by using Lua tables, but it could any C object for example, as long as required operators/methods are implemented. See an example.

StochasticGradient being written in Lua, it is extremely easy to cut-and-paste it and create a variant to it adapted to your needs (if the constraints of StochasticGradient do not satisfy you).

Low Level Training Of a Neural Network

If you want to program the StochasticGradient by hand, you essentially need to control the use of forwards and backwards through the network yourself. For example, here is the code fragment one would need to make a gradient step given an input x, a desired output y, a network mlp and a given criterion criterion and learning rate learningRate:

function gradUpdate(mlp, x, y, criterion, learningRate) 
  local pred = mlp:forward(x)
  local err = criterion:forward(pred, y)
  local gradCriterion = criterion:backward(pred, y)
  mlp:zeroGradParameters()
  mlp:backward(x, gradCriterion)
  mlp:updateParameters(learningRate)
end

For example, if you wish to use your own criterion you can simple replace gradCriterion with the gradient vector of your criterion of choice.

# Modules #

Modules are bricks to build neural networks. A Module is a neural network by itself, but it can be combined with other networks using container classes to create complex neural networks.

## Module ##

Module is an abstract class which defines fundamental methods necessary for a training a neural network. Modules are serializable.

Modules contain two states variables: output and gradInput.

### [output] forward(input) ###

Takes an input object, and computes the corresponding output of the module. In general input and output are Tensors. However, some special sub-classes like table layers might expect something else. Please, refer to each module specification for further information.

After a forward(), the ouput state variable should have been updated to the new value.

It is not advised to override this function. Instead, one should implement updateOutput(input) function. The forward module in the abstract parent class Module will call updateOutput(input).

### [gradInput] backward(input, gradOutput) ###

Performs a backpropagation step through the module, with respect to the given input. In general this method makes the assumption forward(input) has been called before, with the same input. This is necessary for optimization reasons. If you do not respect this rule, backward() will compute incorrect gradients.

In general input and gradOutput and gradInput are Tensors. However, some special sub-classes like table layers might expect something else. Please, refer to each module specification for further information.

A backpropagation step consist in computing two kind of gradients at input given gradOutput (gradients with respect to the output of the module). This function simply performs this task using two function calls:

It is not advised to override this function call in custom classes. It is better to override updateGradInput(input, gradOutput) and accGradParameters(input, gradOutput) functions.

### updateOutput(input) ###

Computes the output using the current parameter set of the class and input. This function returns the result which is stored in the output field.

### updateGradInput(input, gradOutput) ###

Computing the gradient of the module with respect to its own input. This is returned in gradInput. Also, the gradInput state variable is updated accordingly.

### accGradParameters(input, gradOutput) ###

Computing the gradient of the module with respect to its ownparameters. Many modules do not perform this step as they do not have any parameters. The state variable name for the parameters is module dependent. The module is expected to accumulate the gradients with respect to the parameters in some variable.

Zeroing this accumulation is achieved with zeroGradParameters() and updating the parameters according to this accumulation is done with updateParameters().

### zeroGradParameters() ###

If the module has parameters, this will zero the accumulation of the gradients with respect to these parameters, accumulated through accGradParameters(input, gradOutput) calls. Otherwise, it does nothing.

### updateParameters(learningRate) ###

If the module has parameters, this will update these parameters, according to the accumulation of the gradients with respect to these parameters, accumulated through backward() calls.

The update is basically:

parameters = parameters - learningRate * gradients_wrt_parameters

If the module does not have parameters, it does nothing.

### accUpdateGradParameters(input, gradOutput, learningRate) ###

This is a convenience module that performs two functions at once. Calculates and accumulates the gradients with respect to the weights after mutltiplying with negative of the learning rate learningRate. Performing these two operations at once is more performance efficient and it might be advantageous in certain situations.

Keep in mind that, this function uses a simple trick to achieve its goal and it might not be valid for a custom module.

Also note that compared to accGradParameters(), the gradients are not retained for future use.

function Module:accUpdateGradParameters(input, gradOutput, lr)
   local gradWeight = self.gradWeight
   local gradBias = self.gradBias
   self.gradWeight = self.weight
   self.gradBias = self.bias
   self:accGradParameters(input, gradOutput, -lr)
   self.gradWeight = gradWeight
   self.gradBias = gradBias
end

As it can be seen, the gradients are accumulated directly into weights. This assumption may not be true for a module that computes a nonlinear operation.

### share(mlp,s1,s2,...,sn) ###

This function modifies the parameters of the module named s1,..sn (if they exist) so that they are shared with (pointers to) the parameters with the same names in the given module mlp.

The parameters have to be Tensors. This function is typically used if you want to have modules that share the same weights or biases.

Note that this function if called on a Container module will share the same parameters for all the contained modules as well.

Example:

-- make an mlp
mlp1=nn.Sequential(); 
mlp1:add(nn.Linear(100,10));

-- make a second mlp
mlp2=nn.Sequential(); 
mlp2:add(nn.Linear(100,10)); 

-- the second mlp shares the bias of the first
mlp2:share(mlp1,'bias');

-- we change the bias of the first
mlp1:get(1).bias[1]=99;

-- and see that the second one's bias has also changed..
print(mlp2:get(1).bias[1])
### clone(mlp,...) ###

Creates a deep copy of (i.e. not just a pointer to) the module, including the current state of its parameters (e.g. weight, biases etc., if any).

If arguments are provided to the clone(...) function it also calls share(...) with those arguments on the cloned module after creating it, hence making a deep copy of this module with some shared parameters.

Example:

-- make an mlp
mlp1=nn.Sequential(); 
mlp1:add(nn.Linear(100,10));

-- make a copy that shares the weights and biases
mlp2=mlp1:clone('weight','bias');

-- we change the bias of the first mlp
mlp1:get(1).bias[1]=99;

-- and see that the second one's bias has also changed..
print(mlp2:get(1).bias[1])
### type(type) ###

This function converts all the parameters of a module to the given type. The type can be one of the types defined for torch.Tensor.

### float() ###

Convenience method for calling module:type('torch.FloatTensor')

### double() ###

Convenience method for calling module:type('torch.DoubleTensor')

### cuda() ###

Convenience method for calling module:type('torch.CudaTensor')

### State Variables ###

These state variables are useful objects if one wants to check the guts of a Module. The object pointer is never supposed to change. However, its contents (including its size if it is a Tensor) are supposed to change.

In general state variables are Tensors. However, some special sub-classes like table layers contain something else. Please, refer to each module specification for further information.

#### output ####

This contains the output of the module, computed with the last call of forward(input).

#### gradInput ####

This contains the gradients with respect to the inputs of the module, computed with the last call of updateGradInput(input, gradOutput).

Parameters and gradients w.r.t parameters

Some modules contain parameters (the ones that we actually want to train!). The name of these parameters, and gradients w.r.t these parameters are module dependent.

### [{weights}, {gradWeights}] parameters() ###

This function should returns two tables. One for the learnable parameters {weights} and another for the gradients of the energy wrt to the learnable parameters {gradWeights}.

Custom modules should override this function if they use learnable parameters that are stored in tensors.

### [flatParameters, flatGradParameters] getParameters() ###

This function returns two tensors. One for the flattened learnable parameters flatParameters and another for the gradients of the energy wrt to the learnable parameters flatGradParameters.

Custom modules should not override this function. They should instead override parameters(...) which is, in turn, called by the present function.

This function will go over all the weights and gradWeights and make them view into a single tensor (one for weights and one for gradWeights). Since the storage of every weight and gradWeight is changed, this function should be called only once on a given network.

## Containers ## ### Concat ###
module = nn.Concat(dim)

Concat concatenates the output of one layer of "parallel" modules along the provided dimension dim: they take the same inputs, and their output is concatenated.

mlp=nn.Concat(1);
mlp:add(nn.Linear(5,3))
mlp:add(nn.Linear(5,7))
print(mlp:forward(torch.randn(5)))

which gives the output:

 0.7486
 0.1349
 0.7924
-0.0371
-0.4794
 0.3044
-0.0835
-0.7928
 0.7856
-0.1815
[torch.Tensor of dimension 10]
### Sequential ###

Sequential provides a means to plug layers together in a feed-forward fully connected manner.

E.g. creating a one hidden-layer multi-layer perceptron is thus just as easy as:

mlp = nn.Sequential()
mlp:add( nn.Linear(10, 25) ) -- 10 input, 25 hidden units
mlp:add( nn.Tanh() ) -- some hyperbolic tangent transfer function
mlp:add( nn.Linear(25, 1) ) -- 1 output

print(mlp:forward(torch.randn(10)))

which gives the output:

-0.1815
[torch.Tensor of dimension 1]
### Parallel ###

module = Parallel(inputDimension,outputDimension)

Creates a container module that applies its ith child module to the ith slice of the input Tensor by using select on dimension inputDimension. It concatenates the results of its contained modules together along dimension outputDimension.

Example:

 mlp=nn.Parallel(2,1);     -- iterate over dimension 2 of input
 mlp:add(nn.Linear(10,3)); -- apply to first slice
 mlp:add(nn.Linear(10,2))  -- apply to first second slice
 print(mlp:forward(torch.randn(10,2)))

gives the output:

-0.5300
-1.1015
 0.7764
 0.2819
-0.6026
[torch.Tensor of dimension 5]

A more complicated example:

mlp=nn.Sequential();
c=nn.Parallel(1,2)
for i=1,10 do
 local t=nn.Sequential()
 t:add(nn.Linear(3,2))
 t:add(nn.Reshape(2,1))
 c:add(t)
end
mlp:add(c)

pred=mlp:forward(torch.randn(10,3))
print(pred)

for i=1,10000 do     -- Train for a few iterations
 x=torch.randn(10,3);
 y=torch.ones(2,10);
 pred=mlp:forward(x)

 criterion= nn.MSECriterion()
 local err=criterion:forward(pred,y)
 local gradCriterion = criterion:backward(pred,y);
 mlp:zeroGradParameters();
 mlp:backward(x, gradCriterion); 
 mlp:updateParameters(0.01);
 print(err)
end
## Simple layers ## ### Linear ###

module = Linear(inputDimension,outputDimension)

Applies a linear transformation to the incoming data, i.e. //y= Ax+b//. The input tensor given in forward(input) must be either a vector (1D tensor) or matrix (2D tensor). If the input is a matrix, then each row is assumed to be an input sample of given batch.

You can create a layer in the following way:

 module= nn.Linear(10,5)  -- 10 inputs, 5 outputs

Usually this would be added to a network of some kind, e.g.:

 mlp = nn.Sequential();
 mlp:add(module)

The weights and biases (A and b) can be viewed with:

 print(module.weight)
 print(module.bias)

The gradients for these weights can be seen with:

 print(module.gradWeight)
 print(module.gradBias)

As usual with nn modules, applying the linear transformation is performed with:

 x=torch.Tensor(10) -- 10 inputs
 y=module:forward(x)
### SparseLinear ###

module = SparseLinear(inputDimension,outputDimension)

Applies a linear transformation to the incoming sparse data, i.e. y= Ax+b. The input tensor given in forward(input) must be a sparse vector represented as 2D tensor of the form torch.Tensor(N, 2) where the pairs represent indices and values. The SparseLinear layer is useful when the number of input dimensions is very large and the input data is sparse.

You can create a sparse linear layer in the following way:

 module= nn.SparseLinear(10000,2)  -- 10000 inputs, 2 outputs

The sparse linear module may be used as part of a larger network, and apart from the form of the input, SparseLinear operates in exactly the same way as the Linear layer.

A sparse input vector may be created as so..

 x=torch.Tensor({{1, 0.1},{2, 0.3},{10, 0.3},{31, 0.2}})

 print(x)

  1.0000   0.1000
  2.0000   0.3000
 10.0000   0.3000
 31.0000   0.2000
[torch.Tensor of dimension 4x2]

The first column contains indices, the second column contains values in a a vector where all other elements are zeros. The indices should not exceed the stated dimesions of the input to the layer (10000 in the example).

### Abs ###

module = Abs()

output = abs(input).

m=nn.Abs()
ii=torch.linspace(-5,5)
oo=m:forward(ii)
go=torch.ones(100)
gi=m:backward(ii,go)
gnuplot.plot({'f(x)',ii,oo,'+-'},{'df/dx',ii,gi,'+-'})
gnuplot.grid(true)

module = Add(inputDimension,scalar)

Applies a bias term to the incoming data, i.e. _y_i= x_i + b_i, or if scalar=true then uses a single bias term, _y_i= x_i + b.

Example:

y=torch.Tensor(5);  
mlp=nn.Sequential()
mlp:add(nn.Add(5))

function gradUpdate(mlp, x, y, criterion, learningRate) 
  local pred = mlp:forward(x)
  local err = criterion:forward(pred, y)
  local gradCriterion = criterion:backward(pred, y)
  mlp:zeroGradParameters()
  mlp:backward(x, gradCriterion)
  mlp:updateParameters(learningRate)
  return err
end

for i=1,10000 do
 x=torch.rand(5)
 y:copy(x); 
 for i=1,5 do y[i]=y[i]+i; end
 err=gradUpdate(mlp,x,y,nn.MSECriterion(),0.01)
end
print(mlp:get(1).bias)

gives the output:

 1.0000
 2.0000
 3.0000
 4.0000
 5.0000
[torch.Tensor of dimension 5]

i.e. the network successfully learns the input x has been shifted to produce the output y.

### Mul ###

module = Mul(inputDimension)

Applies a single scaling factor to the incoming data, i.e. y= w x, where w is a scalar.

Example:

y=torch.Tensor(5);  
mlp=nn.Sequential()
mlp:add(nn.Mul(5))

function gradUpdate(mlp, x, y, criterion, learningRate) 
  local pred = mlp:forward(x)
  local err = criterion:forward(pred,y)
  local gradCriterion = criterion:backward(pred,y);
  mlp:zeroGradParameters();
  mlp:backward(x, gradCriterion);
  mlp:updateParameters(learningRate);
  return err
end


for i=1,10000 do
 x=torch.rand(5)
 y:copy(x); y:mul(math.pi);
 err=gradUpdate(mlp,x,y,nn.MSECriterion(),0.01)
end
print(mlp:get(1).weight)

gives the output:

 3.1416
[torch.Tensor of dimension 1]

i.e. the network successfully learns the input x has been scaled by pi.

module = CMul(inputDimension)

Applies a component-wise multiplication to the incoming data, i.e. y_i = w_i =x_i=.

Example:

mlp=nn.Sequential()
mlp:add(nn.CMul(5))

y=torch.Tensor(5); 
sc=torch.Tensor(5); for i=1,5 do sc[i]=i; end -- scale input with this

function gradUpdate(mlp,x,y,criterion,learningRate) 
  local pred = mlp:forward(x)
  local err = criterion:forward(pred,y)
  local gradCriterion = criterion:backward(pred,y);
  mlp:zeroGradParameters();
  mlp:backward(x, gradCriterion);
  mlp:updateParameters(learningRate);
  return err
end

for i=1,10000 do
 x=torch.rand(5)
 y:copy(x); y:cmul(sc);
 err=gradUpdate(mlp,x,y,nn.MSECriterion(),0.01)
end
print(mlp:get(1).weight)

gives the output:

 1.0000
 2.0000
 3.0000
 4.0000
 5.0000
[torch.Tensor of dimension 5]

i.e. the network successfully learns the input x has been scaled by those scaling factors to produce the output y.

### Max ###

module = Max(dimension)

Applies a max operation over dimension dimension. Hence, if an nxpxq Tensor was given as input, and dimension = 2 then an nxq matrix would be output.

### Min ###

module = Min(dimension)

Applies a min operation over dimension dimension. Hence, if an nxpxq Tensor was given as input, and dimension = 2 then an nxq matrix would be output.

### Mean ###

module = Mean(dimension)

Applies a mean operation over dimension dimension. Hence, if an nxpxq Tensor was given as input, and dimension = 2 then an nxq matrix would be output.

### Sum ###

module = Sum(dimension)

Applies a sum operation over dimension dimension. Hence, if an nxpxq Tensor was given as input, and dimension = 2 then an nxq matrix would be output.

### Euclidean ###

module = Euclidean(inputDimension,outputDimension)

Outputs the Euclidean distance of the input to outputDimension centers, i.e. this layer has the weights c_i, i = 1,..,outputDimension, where c_i are vectors of dimension inputDimension. Output dimension j is || c_j - x ||, where x is the input.

### WeightedEuclidean ###

module = WeightedEuclidean(inputDimension,outputDimension)

This module is similar to Euclidian, but additionally learns a separate diagonal covariance matrix across the features of the input space for each center.

### Copy ###

module = Copy(inputType,outputType)

This layer copies the input to output with type casting from input type from inputType to outputType.

### Narrow ###

module = Narrow(dimension, offset, length)

Narrow is application of narrow operation in a module.

### Replicate ###

module = Replicate(nFeature)

This class creates an output where the input is replicated nFeature times along its first dimension. There is no memory allocation or memory copy in this module. It sets the stride along the first dimension to zero.

torch> x=torch.linspace(1,5,5)
torch> =x
 1
 2
 3
 4
 5
[torch.DoubleTensor of dimension 5]

torch> m=nn.Replicate(3)
torch> o=m:forward(x)
torch> =o
 1  2  3  4  5
 1  2  3  4  5
 1  2  3  4  5
[torch.DoubleTensor of dimension 3x5]

torch> x:fill(13)
torch> =x
 13
 13
 13
 13
 13
[torch.DoubleTensor of dimension 5]

torch> =o
 13  13  13  13  13
 13  13  13  13  13
 13  13  13  13  13
[torch.DoubleTensor of dimension 3x5]
### Reshape ###

module = Reshape(dimension1, dimension2, ..)

Reshapes an nxpxqx.. Tensor into a dimension1xdimension2x... Tensor, taking the elements column-wise.

Example:

> x=torch.Tensor(4,4)
> for i=1,4 do
>  for j=1,4 do
>   x[i][j]=(i-1)*4+j;
>  end
> end
> print(x)

  1   2   3   4
  5   6   7   8
  9  10  11  12
 13  14  15  16
[torch.Tensor of dimension 4x4]

> print(nn.Reshape(2,8):forward(x))

  1   9   2  10   3  11   4  12
  5  13   6  14   7  15   8  16
[torch.Tensor of dimension 2x8]

> print(nn.Reshape(8,2):forward(x))

  1   3
  5   7
  9  11
 13  15
  2   4
  6   8
 10  12
 14  16
[torch.Tensor of dimension 8x2]

> print(nn.Reshape(16):forward(x))

  1
  5
  9
 13
  2
  6
 10
 14
  3
  7
 11
 15
  4
  8
 12
 16
[torch.Tensor of dimension 16]

### Select ###

Selects a dimension and index of a nxpxqx.. Tensor.

Example:

mlp=nn.Sequential();
mlp:add(nn.Select(1,3))

x=torch.randn(10,5)
print(x)
print(mlp:forward(x))

gives the output:

 0.9720 -0.0836  0.0831 -0.2059 -0.0871
 0.8750 -2.0432 -0.1295 -2.3932  0.8168
 0.0369  1.1633  0.6483  1.2862  0.6596
 0.1667 -0.5704 -0.7303  0.3697 -2.2941
 0.4794  2.0636  0.3502  0.3560 -0.5500
-0.1898 -1.1547  0.1145 -1.1399  0.1711
-1.5130  1.4445  0.2356 -0.5393 -0.6222
-0.6587  0.4314  1.1916 -1.4509  1.9400
 0.2733  1.0911  0.7667  0.4002  0.1646
 0.5804 -0.5333  1.1621  1.5683 -0.1978
[torch.Tensor of dimension 10x5]

 0.0369
 1.1633
 0.6483
 1.2862
 0.6596
[torch.Tensor of dimension 5]

This can be used in conjunction with Concat to emulate the behavior of Parallel, or to select various parts of an input Tensor to perform operations on. Here is a fairly complicated example:

mlp=nn.Sequential();
c=nn.Concat(2) 
for i=1,10 do
 local t=nn.Sequential()
 t:add(nn.Select(1,i))
 t:add(nn.Linear(3,2)) 
 t:add(nn.Reshape(2,1))
 c:add(t)
end
mlp:add(c)

pred=mlp:forward(torch.randn(10,3))
print(pred)

for i=1,10000 do     -- Train for a few iterations
 x=torch.randn(10,3);
 y=torch.ones(2,10);
 pred=mlp:forward(x)

 criterion= nn.MSECriterion()
 err=criterion:forward(pred,y)
 gradCriterion = criterion:backward(pred,y);
 mlp:zeroGradParameters();
 mlp:backward(x, gradCriterion); 
 mlp:updateParameters(0.01);
 print(err)
end
### Exp ###

Applies the exp function element-wise to the input Tensor, thus outputting a Tensor of the same dimension.

ii=torch.linspace(-2,2)
m=nn.Exp()
oo=m:forward(ii)
go=torch.ones(100)
gi=m:backward(ii,go)
gnuplot.plot({'f(x)',ii,oo,'+-'},{'df/dx',ii,gi,'+-'})
gnuplot.grid(true)

### Square ###

Takes the square of each element.

ii=torch.linspace(-5,5)
m=nn.Square()
oo=m:forward(ii)
go=torch.ones(100)
gi=m:backward(ii,go)
gnuplot.plot({'f(x)',ii,oo,'+-'},{'df/dx',ii,gi,'+-'})
gnuplot.grid(true)

### Sqrt ###

Takes the square root of each element.

ii=torch.linspace(0,5)
m=nn.Sqrt()
oo=m:forward(ii)
go=torch.ones(100)
gi=m:backward(ii,go)
gnuplot.plot({'f(x)',ii,oo,'+-'},{'df/dx',ii,gi,'+-'})
gnuplot.grid(true)

### Power ###

module = Power(p)

Raises each element to its pth power.

ii=torch.linspace(0,2)
m=nn.Power(1.25)
oo=m:forward(ii)
go=torch.ones(100)
gi=m:backward(ii,go)
gnuplot.plot({'f(x)',ii,oo,'+-'},{'df/dx',ii,gi,'+-'})
gnuplot.grid(true)

## Transfer Function Layers ## ### HardTanh ###

Applies the HardTanh function element-wise to the input Tensor, thus outputting a Tensor of the same dimension.

HardTanh is defined as:

  • f(x) = 1, if x > 1,
  • f(x) = -1, if x < -1,
  • f(x) = x, otherwise.
ii=torch.linspace(-2,2)
m=nn.HardTanh()
oo=m:forward(ii)
go=torch.ones(100)
gi=m:backward(ii,go)
gnuplot.plot({'f(x)',ii,oo,'+-'},{'df/dx',ii,gi,'+-'})
gnuplot.grid(true)

### HardShrink ###

module = nn.HardShrink(lambda)

Applies the hard shrinkage function element-wise to the input Tensor. The output is the same size as the input.

HardShrinkage operator is defined as:

  • f(x) = x, if x > lambda
  • f(x) = -x, if < -lambda
  • f(x) = 0, otherwise
ii=torch.linspace(-2,2)
m=nn.HardShrink(0.85)
oo=m:forward(ii)
go=torch.ones(100)
gi=m:backward(ii,go)
gnuplot.plot({'f(x)',ii,oo,'+-'},{'df/dx',ii,gi,'+-'})
gnuplot.grid(true)

### SoftShrink ###

module = nn.SoftShrink(lambda)

Applies the hard shrinkage function element-wise to the input Tensor. The output is the same size as the input.

HardShrinkage operator is defined as:

  • f(x) = x-lambda, if x > lambda
  • f(x) = -x+lambda, if < -lambda
  • f(x) = 0, otherwise
ii=torch.linspace(-2,2)
m=nn.SoftShrink(0.85)
oo=m:forward(ii)
go=torch.ones(100)
gi=m:backward(ii,go)
gnuplot.plot({'f(x)',ii,oo,'+-'},{'df/dx',ii,gi,'+-'})
gnuplot.grid(true)

### SoftMax ###

Applies the Softmax function to an n-dimensional input Tensor, rescaling them so that the elements of the n-dimensional output Tensor lie in the range (0,1) and sum to 1.

Softmax is defined as f_i(x) = exp(x_i-shift) / sum_j exp(x_j-shift), where shift = max_i x_i.

ii=torch.exp(torch.abs(torch.randn(10)))
m=nn.SoftMax()
oo=m:forward(ii)
gnuplot.plot({'Input',ii,'+-'},{'Output',oo,'+-'})
gnuplot.grid(true)

### SoftMin ###

Applies the Softmin function to an n-dimensional input Tensor, rescaling them so that the elements of the n-dimensional output Tensor lie in the range (0,1) and sum to 1.

Softmin is defined as f_i(x) = exp(-x_i-shift) / sum_j exp(-x_j-shift), where shift = max_i x_i.

ii=torch.exp(torch.abs(torch.randn(10)))
m=nn.SoftMin()
oo=m:forward(ii)
gnuplot.plot({'Input',ii,'+-'},{'Output',oo,'+-'})
gnuplot.grid(true)

### SoftPlus ###

Applies the SoftPlus function to an n-dimensioanl input Tensor. Can be used to constrain the output of a machine to always be positive.

SoftPlus is defined as f_i(x) = log(1 + exp(x_i))).

ii=torch.randn(10)
m=nn.SoftPlus()
oo=m:forward(ii)
go=torch.ones(10)
gi=m:backward(ii,go)
gnuplot.plot({'Input',ii,'+-'},{'Output',oo,'+-'},{'gradInput',gi,'+-'})
gnuplot.grid(true)

### SoftSign ###

Applies the SoftSign function to an n-dimensioanl input Tensor.

SoftSign is defined as f_i(x) = x_i / (1+|x_i|)

ii=torch.linspace(-5,5)
m=nn.SoftSign()
oo=m:forward(ii)
go=torch.ones(100)
gi=m:backward(ii,go)
gnuplot.plot({'f(x)',ii,oo,'+-'},{'df/dx',ii,gi,'+-'})
gnuplot.grid(true)

### LogSigmoid ###

Applies the LogSigmoid function to an n-dimensional input Tensor.

LogSigmoid is defined as f_i(x) = log(1/(1+ exp(-x_i))).

ii=torch.randn(10)
m=nn.LogSigmoid()
oo=m:forward(ii)
go=torch.ones(10)
gi=m:backward(ii,go)
gnuplot.plot({'Input',ii,'+-'},{'Output',oo,'+-'},{'gradInput',gi,'+-'})
gnuplot.grid(true)

### LogSoftMax ###

Applies the LogSoftmax function to an n-dimensional input Tensor.

LogSoftmax is defined as f_i(x) = log(1/a exp(x_i)), where a = sum_j exp(x_j).

ii=torch.randn(10)
m=nn.LogSoftMax()
oo=m:forward(ii)
go=torch.ones(10)
gi=m:backward(ii,go)
gnuplot.plot({'Input',ii,'+-'},{'Output',oo,'+-'},{'gradInput',gi,'+-'})
gnuplot.grid(true)

### Sigmoid ###

Applies the Sigmoid function element-wise to the input Tensor, thus outputting a Tensor of the same dimension.

Sigmoid is defined as f(x) = 1/(1+exp(-x)).

ii=torch.linspace(-5,5)
m=nn.Sigmoid()
oo=m:forward(ii)
go=torch.ones(100)
gi=m:backward(ii,go)
gnuplot.plot({'f(x)',ii,oo,'+-'},{'df/dx',ii,gi,'+-'})
gnuplot.grid(true)

### Tanh ###

Applies the Tanh function element-wise to the input Tensor, thus outputting a Tensor of the same dimension.

ii=torch.linspace(-3,3)
m=nn.Tanh()
oo=m:forward(ii)
go=torch.ones(100)
gi=m:backward(ii,go)
gnuplot.plot({'f(x)',ii,oo,'+-'},{'df/dx',ii,gi,'+-'})
gnuplot.grid(true)

## Convolutional layers ##

SpatialConvolution and SpatialSubsampling apply to inputs with two-dimensional relationships (e.g. images). TemporalConvolution and TemporalSubsampling apply to sequences with a one-dimensional relationship (e.g. strings of some kind).

For spatial convolutional layers, the input is supposed to be 3D. The first dimension is the number of features, the last two dimenstions are spatial.

### SpatialConvolution ###
module = nn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, [dW], [dH])

Applies a 2D convolution over an input image composed of several input planes. The input tensor in forward(input) is expected to be a 3D tensor (nInputPlane x height x width).

The parameters are the following:

  • nInputPlane: The number of expected input planes in the image given into forward().
  • nOutputPlane: The number of output planes the convolution layer will produce.
  • kW: The kernel width of the convolution
  • kH: The kernel height of the convolution
  • dW: The step of the convolution in the width dimension. Default is 1.
  • dH: The step of the convolution in the height dimension. Default is 1.

Note that depending of the size of your kernel, several (of the last) columns or rows of the input image might be lost. It is up to the user to add proper padding in images.

If the input image is a 3D tensor nInputPlane x height x width, the output image size will be nOutputPlane x owidth x oheight where

owidth  = (width  - kW) / dW + 1
oheight = (height - kH) / dH + 1 .

The parameters of the convolution can be found in self.weight (Tensor of size nOutputPlane x nInputPlane x kH x kW) and self.bias (Tensor of size nOutputPlane). The corresponding gradients can be found in self.gradWeight and self.gradBias.

The output value of the layer can be precisely described as:

output[i][j][k] = bias[k]
  + sum_l sum_{s=1}^kW sum_{t=1}^kH weight[s][t][l][k]
                                    * input[dW*(i-1)+s)][dH*(j-1)+t][l]
### VolumetricConvolution ###
module = nn.VolumetricConvolution(nInputPlane, nOutputPlane, kT, kW, kH [, dT, dW, dH])

Applies a 3D convolution over an input image composed of several input planes. The input tensor in forward(input) is expected to be a 4D tensor (nInputPlane x time x height x width).

The parameters are the following:

  • nInputPlane: The number of expected input planes in the image given into forward().
  • nOutputPlane: The number of output planes the convolution layer will produce.
  • kT: The kernel size of the convolution in time
  • kW: The kernel width of the convolution
  • kH: The kernel height of the convolution
  • dT: The step of the convolution in the time dimension. Default is 1.
  • dW: The step of the convolution in the width dimension. Default is 1.
  • dH: The step of the convolution in the height dimension. Default is 1.

Note that depending of the size of your kernel, several (of the last) columns or rows of the input image might be lost. It is up to the user to add proper padding in images.

If the input image is a 4D tensor nInputPlane x time x height x width, the output image size will be nOutputPlane x otime x owidth x oheight where

otime   = (time  - kT) / dT + 1
owidth  = (width  - kW) / dW + 1
oheight = (height - kH) / dH + 1 .

The parameters of the convolution can be found in self.weight (Tensor of size nOutputPlane x nInputPlane x kT x kH x kW) and self.bias (Tensor of size nOutputPlane). The corresponding gradients can be found in self.gradWeight and self.gradBias.

### SpatialConvolutionMap ###
module = nn.SpatialConvolutionMap(connectionMatrix, kW, kH, [dW], [dH])

This class is a generalization of nn.SpatialConvolution. It uses a geenric connection table between input and output features. The nn.SpatialConvolution is equivalent to using a full connection table. One can specify different types of connection tables.

#### Full Connection Table ####

table = nn.tables.full(nin,nout)

This is a precomputed table that specifies connections between every input and output node.

#### One to One Connection Table ####

table = nn.tables.oneToOne(n)

This is a precomputed table that specifies a single connection to each output node from corresponding input node.

#### Random Connection Table ####

table = nn.tables.random(nin,nout, nto)

This table is randomly populated such that each output unit has nto incoming connections. The algorihtm tries to assign uniform number of outgoing connections to each input node if possible.

### SpatialLPPooling ###
module = nn.SpatialLPPooling(nInputPlane, pnorm, kW, kH, [dW], [dH])

Computes the p norm in a convolutional manner on a set of 2D input planes.

### SpatialMaxPooling ###
module = nn.SpatialMaxPooling(kW, kH [, dW, dH])

Applies 2D max-pooling operation in kWxkH regions by step size dWxdH steps. The number of output features is equal to the number of input planes.

### VolumetricMaxPooling ###
module = nn.VolumetricMaxPooling(kT, kW, kH [, dT, dW, dH])

Applies 3D max-pooling operation in kTxkWxkH regions by step size dTxdWxdH steps. The number of output features is equal to the number of input planes.

### SpatialSubSampling ###
module = nn.SpatialSubSampling(nInputPlane, kW, kH, [dW], [dH])

Applies a 2D sub-sampling over an input image composed of several input planes. The input tensor in forward(input) is expected to be a 3D tensor (nInputPlane x height x width). The number of output planes will be the same as nInputPlane.

The parameters are the following:

  • nInputPlane: The number of expected input planes in the image given into forward().
  • kW: The kernel width of the sub-sampling
  • kH: The kernel height of the sub-sampling
  • dW: The step of the sub-sampling in the width dimension. Default is 1.
  • dH: The step of the sub-sampling in the height dimension. Default is 1.

Note that depending of the size of your kernel, several (of the last) columns or rows of the input image might be lost. It is up to the user to add proper padding in images.

If the input image is a 3D tensor nInputPlane x height x width, the output image size will be nInputPlane x oheight x owidth where

owidth  = (width  - kW) / dW + 1
oheight = (height - kH) / dH + 1 .

The parameters of the sub-sampling can be found in self.weight (Tensor of size nInputPlane) and self.bias (Tensor of size nInputPlane). The corresponding gradients can be found in self.gradWeight and self.gradBias.

The output value of the layer can be precisely described as:

output[i][j][k] = bias[k]
  + weight[k] sum_{s=1}^kW sum_{t=1}^kH input[dW*(i-1)+s)][dH*(j-1)+t][k]
### SpatialZeroPadding ###
module = nn.SpatialZeroPadding(padLeft, padRight, padTop, padBottom)

Each feature map of a given input is padded with specified number of zeros. If padding values are negative, then input is cropped.

### SpatialSubtractiveNormalization ###
module = nn.SpatialSubtractiveNormalization(ninputplane, kernel)

Applies a spatial subtraction operation on a series of 2D inputs using kernel for computing the weighted average in a neighborhood. The neighborhood is defined for a local spatial region that is the size as kernel and across all features. For a an input image, since there is only one feature, the region is only spatial. For an RGB image, the weighted anerage is taken over RGB channels and a spatial region.

If the kernel is 1D, then it will be used for constructing and seperable 2D kernel. The operations will be much more efficient in this case.

The kernel is generally chosen as a gaussian when it is believed that the correlation of two pixel locations decrease with increasing distance. On the feature dimension, a uniform average is used since the weighting across features is not known.

For this example we use an external package image

require 'image'
require 'nn'
lena = image.rgb2y(image.lena())
ker = torch.ones(11)
m=nn.SpatialSubtractiveNormalization(1,ker)
processed = m:forward(lena)
w1=image.display(lena)
w2=image.display(processed)

### TemporalConvolution ###
module = nn.TemporalConvolution(inputFrameSize, outputFrameSize, kW, [dW])

Applies a 1D convolution over an input sequence composed of nInputFrame frames. The input tensor in forward(input) is expected to be a 2D tensor (nInputFrame x inputFrameSize).

The parameters are the following:

  • inputFrameSize: The input frame size expected in sequences given into forward().
  • outputFrameSize: The output frame size the convolution layer will produce.
  • kW: The kernel width of the convolution
  • dW: The step of the convolution. Default is 1.

Note that depending of the size of your kernel, several (of the last) frames of the sequence might be lost. It is up to the user to add proper padding frames in the input sequences.

If the input sequence is a 2D tensor inputFrameSize x nInputFrame, the output sequence will be nOutputFrame x outputFrameSize where

nOutputFrame = (nInputFrame - kW) / dW + 1

The parameters of the convolution can be found in self.weight (Tensor of size outputFrameSize x (inputFrameSize x kW) ) and self.bias (Tensor of size outputFrameSize). The corresponding gradients can be found in self.gradWeight and self.gradBias.

The output value of the layer can be precisely described as:

output[i][t] = bias[i]
  + sum_j sum_{k=1}^kW weight[j][k][i]
                                * input[j][dW*(t-1)+k)]

Here is a simple example:

inp=5;  -- dimensionality of one sequence element 
outp=1; -- number of derived features for one sequence element
kw=1;   -- kernel only operates on one sequence element at once
dw=1;   -- we step once and go on to the next sequence element

mlp=nn.TemporalConvolution(inp,outp,kw,dw)

x=torch.rand(7,inp) -- a sequence of 7 elements
print(mlp:forward(x))

which gives:

-0.9109
-0.9872
-0.6808
-0.9403
-0.9680 
-0.6901 
-0.6387
[torch.Tensor of dimension 7x1]

This is equivalent to:

weights=torch.reshape(mlp.weight,inp) -- weights applied to all
bias= mlp.bias[1];
for i=1,x:size(1) do -- for each sequence element
  element= x[i]; -- features of ith sequence element
  print(element:dot(weights) + bias)
end

which gives:

-0.91094998687717
-0.98721705771773
-0.68075004276185
-0.94030132495887
-0.96798754116609
-0.69008470895581
-0.63871422284166
### TemporalSubSampling ###
module = nn.TemporalSubSampling(inputFrameSize, kW, [dW])

Applies a 1D sub-sampling over an input sequence composed of nInputFrame frames. The input tensor in forward(input) is expected to be a 2D tensor (nInputFrame x inputFrameSize). The output frame size will be the same as the input one (inputFrameSize).

The parameters are the following:

  • inputFrameSize: The input frame size expected in sequences given into forward().
  • kW: The kernel width of the sub-sampling
  • dW: The step of the sub-sampling. Default is 1.

Note that depending of the size of your kernel, several (of the last) frames of the sequence might be lost. It is up to the user to add proper padding frames in the input sequences.

If the input sequence is a 2D tensor nInputFrame x inputFrameSize, the output sequence will be inputFrameSize x nOutputFrame where

nOutputFrame = (nInputFrame - kW) / dW + 1

The parameters of the sub-sampling can be found in self.weight (Tensor of size inputFrameSize) and self.bias (Tensor of size inputFrameSize). The corresponding gradients can be found in self.gradWeight and self.gradBias.

The output value of the layer can be precisely described as:

output[i][t] = bias[i] + weight[i] * sum_{k=1}^kW input[i][dW*(t-1)+k)]
### LookupTable ###
module = nn.LookupTable(nIndex, sizes)

or

module = nn.LookupTable(nIndex, size1, [size2], [size3], ...)

This layer is a particular case of a convolution, where the width of the convolution would be 1. When calling forward(input), it assumes input is a 1D tensor filled with indices. Indices start at 1 and can go up to nIndex. For each index, it outputs a corresponding Tensor of size specified by sizes (an LongStorage) or size1 x size2 x....

The output tensors are concatenated, generating a size1 x size2 x ... x sizeN x n tensor, where n is the size of the input tensor.

When only size1 is provided, this is equivalent to do the following matrix-matrix multiplication in an efficient manner:

M P

where M is a 2D matrix size1 x nIndex containing the parameters of the lookup-table and P is a 2D matrix, where each column vector i is a zero vector except at index input[i] where it is 1.

Example:

 -- a lookup table containing 10 tensors of size 3
 module = nn.LookupTable(10, 3) 

 input = torch.Tensor(4)
 input[1] = 1; input[2] = 2; input[3] = 1; input[4] = 10;
 print(module:forward(input))

Outputs something like:

-0.1784  2.2045 -0.1784 -0.2475
-1.0120  0.0537 -1.0120 -0.2148
-1.2840  0.8685 -1.2840 -0.2792
[torch.Tensor of dimension 3x4]

Note that the first column vector is the same than the 3rd one!

## Layers for manipulating tables ##

This set of modules allows the manipulation of Tables through the layers of a neural network. This allows one to build very rich architectures.

Table-based modules work by supporting forward and backward methods that can accept tables as inputs. It turns out that the usual Sequential module can do this, so all that is needed is other child modules that take advantage of such tables.

mlp = nn.Sequential();
t={x,y,z}
pred=mlp:forward(t)
pred=mlp:forward{x,y,z}      -- This is equivalent to the line before
### ConcatTable ###

ConcatTable is a container module that applies each member module to the same input Tensor.

Example:

mlp= nn.ConcatTable()
mlp:add(nn.Linear(5,2))
mlp:add(nn.Linear(5,3))

pred=mlp:forward(torch.randn(5));
for i,k in pairs(pred) do print(i,k); end

which gives the output:

1
-0.4073
 0.0110
[torch.Tensor of dimension 2]

2
 0.0027
-0.0598
-0.1189
[torch.Tensor of dimension 3] 
### ParallelTable ###

ParallelTable is a container module that, in its forward method, applies the ith member module to the ith input, and outputs a table of the set of outputs.

Example:

mlp= nn.ParallelTable()
mlp:add(nn.Linear(10,2))
mlp:add(nn.Linear(5,3))

x=torch.randn(10)
y=torch.rand(5)

pred=mlp:forward{x,y}
for i,k in pairs(pred) do print(i,k); end

which gives the output:

1
 0.0331
 0.7003
[torch.Tensor of dimension 2]

2
 0.0677
-0.1657
-0.7383
[torch.Tensor of dimension 3]
### SplitTable ###

module = SplitTable(dimension)

Creates a module that takes a Tensor as input and outputs several tables, splitting the Tensor along dimension dimension.

Example 1:

mlp=nn.SplitTable(2)
x=torch.randn(4,3)
pred=mlp:forward(x)
for i,k in pairs(pred) do print(i,k); end

gives the output:

1
 1.3885
 1.3295
 0.4281
-1.0171
[torch.Tensor of dimension 4]

2
-1.1565
-0.8556
-1.0717
-0.8316
[torch.Tensor of dimension 4]

3
-1.3678
-0.1709
-0.0191
-2.5871
[torch.Tensor of dimension 4]

Example 2:

mlp=nn.SplitTable(1)
pred=mlp:forward(torch.randn(10,3))
for i,k in pairs(pred) do print(i,k); end

gives the output:

1
 1.6114
 0.9038
 0.8419
[torch.Tensor of dimension 3]

2
 2.4742
 0.2208
 1.6043
[torch.Tensor of dimension 3]

3
 1.3415
 0.2984
 0.2260
[torch.Tensor of dimension 3]

4
 2.0889
 1.2309
 0.0983
[torch.Tensor of dimension 3]

A more complicated example:

mlp=nn.Sequential();       --Create a network that takes a Tensor as input
mlp:add(nn.SplitTable(2))
 c=nn.ParallelTable()      --The two Tensors go through two different Linear
 c:add(nn.Linear(10,3))	   --Layers in Parallel
 c:add(nn.Linear(10,7))
mlp:add(c)                 --Outputing a table with 2 elements
 p=nn.ParallelTable()      --These tables go through two more linear layers
 p:add(nn.Linear(3,2))	   -- separately.
 p:add(nn.Linear(7,1)) 
mlp:add(p) 
mlp:add(nn.JoinTable(1))   --Finally, the tables are joined together and output. 

pred=mlp:forward(torch.randn(10,2))
print(pred)

for i=1,100 do             -- A few steps of training such a network.. 
 x=torch.ones(10,2);
 y=torch.Tensor(3); y:copy(x:select(2,1,1):narrow(1,1,3))
 pred=mlp:forward(x)

 criterion= nn.MSECriterion()
 local err=criterion:forward(pred,y)
 local gradCriterion = criterion:backward(pred,y);
 mlp:zeroGradParameters();
 mlp:backward(x, gradCriterion); 
 mlp:updateParameters(0.05);

 print(err)
end
### JoinTable ###

module = JoinTable(dimension)

Creates a module that takes a list of Tensors as input and outputs a Tensor by joining them together along dimension dimension.

Example:

x=torch.randn(5,1)
y=torch.randn(5,1)
z=torch.randn(2,1)

print(nn.JoinTable(1):forward{x,y})
print(nn.JoinTable(2):forward{x,y})
print(nn.JoinTable(1):forward{x,z})

gives the output:

1.3965
 0.5146
-1.5244
-0.9540
 0.4256
 0.1575
 0.4491
 0.6580
 0.1784
-1.7362
 
 1.3965  0.1575
 0.5146  0.4491
-1.5244  0.6580
-0.9540  0.1784
 0.4256 -1.7362

 1.3965
 0.5146
-1.5244
-0.9540
 0.4256
-1.2660
 1.0869
[torch.Tensor of dimension 7x1]

A more complicated example:

mlp=nn.Sequential();       --Create a network that takes a Tensor as input
 c=nn.ConcatTable()        --The same Tensor goes through two different Linear
 c:add(nn.Linear(10,3))	   --Layers in Parallel
 c:add(nn.Linear(10,7))
mlp:add(c)                 --Outputing a table with 2 elements
 p=nn.ParallelTable()      --These tables go through two more linear layers
 p:add(nn.Linear(3,2))	   -- separately.
 p:add(nn.Linear(7,1)) 
mlp:add(p) 
mlp:add(nn.JoinTable(1))   --Finally, the tables are joined together and output. 

pred=mlp:forward(torch.randn(10))
print(pred)

for i=1,100 do             -- A few steps of training such a network.. 
 x=torch.ones(10);
 y=torch.Tensor(3); y:copy(x:narrow(1,1,3))
 pred=mlp:forward(x)

 criterion= nn.MSECriterion()
 local err=criterion:forward(pred,y)
 local gradCriterion = criterion:backward(pred,y);
 mlp:zeroGradParameters();
 mlp:backward(x, gradCriterion); 
 mlp:updateParameters(0.05);

 print(err)
end
### Identity ###

module = Identity()

Creates a module that returns whatever is input to it as output. This is useful when combined with the module ParallelTable in case you do not wish to do anything to one of the input Tensors. Example:

mlp=nn.Identity()
print(mlp:forward(torch.ones(5,2)))

gives the output:

 1  1
 1  1
 1  1
 1  1
 1  1
[torch.Tensor of dimension 5x2]

Here is a more useful example, where one can implement a network which also computes a Criterion using this module:

pred_mlp=nn.Sequential(); -- A network that makes predictions given x.
pred_mlp:add(nn.Linear(5,4)) 
pred_mlp:add(nn.Linear(4,3)) 

xy_mlp=nn.ParallelTable();-- A network for predictions and for keeping the
xy_mlp:add(pred_mlp)      -- true label for comparison with a criterion
xy_mlp:add(nn.Identity()) -- by forwarding both x and y through the network.

mlp=nn.Sequential();     -- The main network that takes both x and y.
mlp:add(xy_mlp)		 -- It feeds x and y to parallel networks;
cr=nn.MSECriterion();
cr_wrap=nn.CriterionTable(cr)
mlp:add(cr_wrap)         -- and then applies the criterion.

for i=1,100 do 		 -- Do a few training iterations
  x=torch.ones(5);          -- Make input features.
  y=torch.Tensor(3); 
  y:copy(x:narrow(1,1,3)) -- Make output label.
  err=mlp:forward{x,y}    -- Forward both input and output.
  print(err)		 -- Print error from criterion.

  mlp:zeroGradParameters();  -- Do backprop... 
  mlp:backward({x, y} );   
  mlp:updateParameters(0.05); 
end
### PairwiseDistance ###

module = PairwiseDistance(p) creates a module that takes a table of two vectors as input and outputs the distance between them using the p-norm.

Example:

mlp_l1=nn.PairwiseDistance(1)
mlp_l2=nn.PairwiseDistance(2)
x=torch.Tensor(1,2,3) 
y=torch.Tensor(4,5,6)
print(mlp_l1:forward({x,y}))
print(mlp_l2:forward({x,y}))

gives the output:

 9
[torch.Tensor of dimension 1]

 5.1962
[torch.Tensor of dimension 1]

A more complicated example:

-- imagine we have one network we are interested in, it is called "p1_mlp"
p1_mlp= nn.Sequential(); p1_mlp:add(nn.Linear(5,2))

-- But we want to push examples towards or away from each other
-- so we make another copy of it called p2_mlp
-- this *shares* the same weights via the set command, but has its own set of temporary gradient storage
-- that's why we create it again (so that the gradients of the pair don't wipe each other)
p2_mlp= nn.Sequential(); p2_mlp:add(nn.Linear(5,2))
p2_mlp:get(1).weight:set(p1_mlp:get(1).weight)
p2_mlp:get(1).bias:set(p1_mlp:get(1).bias)

-- we make a parallel table that takes a pair of examples as input. they both go through the same (cloned) mlp
prl = nn.ParallelTable()
prl:add(p1_mlp)
prl:add(p2_mlp)

-- now we define our top level network that takes this parallel table and computes the pairwise distance betweem
-- the pair of outputs
mlp= nn.Sequential()
mlp:add(prl)
mlp:add(nn.PairwiseDistance(1))

-- and a criterion for pushing together or pulling apart pairs
crit=nn.HingeEmbeddingCriterion(1)

-- lets make two example vectors
x=torch.rand(5)
y=torch.rand(5)


-- Use a typical generic gradient update function
function gradUpdate(mlp, x, y, criterion, learningRate)
local pred = mlp:forward(x)
local err = criterion:forward(pred, y)
local gradCriterion = criterion:backward(pred, y)
mlp:zeroGradParameters()
mlp:backward(x, gradCriterion)
mlp:updateParameters(learningRate)
end

-- push the pair x and y together, notice how then the distance between them given
-- by  print(mlp:forward({x,y})[1]) gets smaller
for i=1,10 do
gradUpdate(mlp,{x,y},1,crit,0.01)
print(mlp:forward({x,y})[1])
end


-- pull apart the pair x and y, notice how then the distance between them given
-- by  print(mlp:forward({x,y})[1]) gets larger

for i=1,10 do
gradUpdate(mlp,{x,y},-1,crit,0.01)
print(mlp:forward({x,y})[1])
end
### DotProduct ###

module = DotProduct() creates a module that takes a table of two vectors as input and outputs the dot product between them.

Example:

mlp=nn.DotProduct()
x=torch.Tensor(1,2,3) 
y=torch.Tensor(4,5,6)
print(mlp:forward({x,y}))

gives the output:

 32
[torch.Tensor of dimension 1]

A more complicated example:

-- Train a ranking function so that mlp:forward({x,y},{x,z}) returns a number
-- which indicates whether x is better matched with y or z (larger score = better match), or vice versa.

mlp1=nn.Linear(5,10)
mlp2=mlp1:clone('weight','bias')

prl=nn.ParallelTable();
prl:add(mlp1); prl:add(mlp2)

mlp1=nn.Sequential()
mlp1:add(prl)
mlp1:add(nn.DotProduct())

mlp2=mlp1:clone('weight','bias')

mlp=nn.Sequential()
prla=nn.ParallelTable()
prla:add(mlp1)
prla:add(mlp2)
mlp:add(prla)

x=torch.rand(5); 
y=torch.rand(5)
z=torch.rand(5)


print(mlp1:forward{x,x})
print(mlp1:forward{x,y})
print(mlp1:forward{y,y})


crit=nn.MarginRankingCriterion(1); 

-- Use a typical generic gradient update function
function gradUpdate(mlp, x, y, criterion, learningRate)
   local pred = mlp:forward(x)
   local err = criterion:forward(pred, y)
   local gradCriterion = criterion:backward(pred, y)
   mlp:zeroGradParameters()
   mlp:backward(x, gradCriterion)
   mlp:updateParameters(learningRate)
end

inp={{x,y},{x,z}}

math.randomseed(1)

-- make the pair x and y have a larger dot product than x and z

for i=1,100 do
   gradUpdate(mlp,inp,1,crit,0.05)
   o1=mlp1:forward{x,y}[1]; 
   o2=mlp2:forward{x,z}[1]; 
   o=crit:forward(mlp:forward{{x,y},{x,z}},1)
   print(o1,o2,o)
end

print "________________**"

-- make the pair x and z have a larger dot product than x and y

for i=1,100 do
   gradUpdate(mlp,inp,-1,crit,0.05)
   o1=mlp1:forward{x,y}[1]; 
   o2=mlp2:forward{x,z}[1]; 
   o=crit:forward(mlp:forward{{x,y},{x,z}},-1)
   print(o1,o2,o)
end
### CosineDistance ###

module = CosineDistance() creates a module that takes a table of two vectors as input and outputs the cosine distance between them.

Example:

mlp=nn.CosineDistance()
x=torch.Tensor(1,2,3) 
y=torch.Tensor(4,5,6)
print(mlp:forward({x,y}))

gives the output:

 0.9746
[torch.Tensor of dimension 1]

A more complicated example:

-- imagine we have one network we are interested in, it is called "p1_mlp"
p1_mlp= nn.Sequential(); p1_mlp:add(nn.Linear(5,2))

-- But we want to push examples towards or away from each other
-- so we make another copy of it called p2_mlp
-- this *shares* the same weights via the set command, but has its own set of temporary gradient storage
-- that's why we create it again (so that the gradients of the pair don't wipe each other)
p2_mlp= p1_mlp:clone('weight','bias')

-- we make a parallel table that takes a pair of examples as input. they both go through the same (cloned) mlp
prl = nn.ParallelTable()
prl:add(p1_mlp)
prl:add(p2_mlp)

-- now we define our top level network that takes this parallel table and computes the cosine distance betweem
-- the pair of outputs
mlp= nn.Sequential()
mlp:add(prl)
mlp:add(nn.CosineDistance())


-- lets make two example vectors
x=torch.rand(5)
y=torch.rand(5)

-- Grad update function..
function gradUpdate(mlp, x, y, learningRate)
local pred = mlp:forward(x)
if pred[1]*y < 1 then
 gradCriterion=torch.Tensor(-y)
 mlp:zeroGradParameters()
 mlp:backward(x, gradCriterion)
 mlp:updateParameters(learningRate)
end
end

-- push the pair x and y together, the distance should get larger..
for i=1,1000 do
 gradUpdate(mlp,{x,y},1,0.1)
 if ((i%100)==0) then print(mlp:forward({x,y})[1]);end
end


-- pull apart the pair x and y, the distance should get smaller..

for i=1,1000 do
 gradUpdate(mlp,{x,y},-1,0.1)
 if ((i%100)==0) then print(mlp:forward({x,y})[1]);end
end
### CriterionTable ###

module = CriterionTable(criterion)

Creates a module that wraps a Criterion module so that it can accept a Table of inputs. Typically the table would contain two elements: the input and output x and y that the Criterion compares.

Example:

mlp = nn.CriterionTable(nn.MSECriterion())
x=torch.randn(5)
y=torch.randn(5)
print(mlp:forward{x,x})
print(mlp:forward{x,y})

gives the output:

0
1.9028918413199

Here is a more complex example of embedding the criterion into a network:

function table.print(t)
 for i,k in pairs(t) do print(i,k); end
end
 
mlp=nn.Sequential();                          -- Create an mlp that takes input
  main_mlp=nn.Sequential();		      -- and output using ParallelTable      
  main_mlp:add(nn.Linear(5,4)) 
  main_mlp:add(nn.Linear(4,3))
 cmlp=nn.ParallelTable(); 
 cmlp:add(main_mlp)
 cmlp:add(nn.Identity())           
mlp:add(cmlp)
mlp:add(nn.CriterionTable(nn.MSECriterion())) -- Apply the Criterion

for i=1,20 do                                 -- Train for a few iterations
 x=torch.ones(5);
 y=torch.Tensor(3); y:copy(x:narrow(1,1,3))
 err=mlp:forward{x,y}                         -- Pass in both input and output
 print(err)

 mlp:zeroGradParameters();
 mlp:backward({x, y} );   
 mlp:updateParameters(0.05); 
end
### CAddTable ###

Takes a table of tensors and outputs summation of all tensors.

ii = {torch.ones(5),torch.ones(5)*2,torch.ones(5)*3}
=ii[1]
 1
 1
 1
 1
 1
[torch.DoubleTensor of dimension 5]

return ii[2]
 2
 2
 2
 2
 2
[torch.DoubleTensor of dimension 5]

return ii[3]
 3
 3
 3
 3
 3
[torch.DoubleTensor of dimension 5]

m=nn.CAddTable()
=m:forward(ii)
 6
 6
 6
 6
 6
[torch.DoubleTensor of dimension 5]
### CSubTable ###

Takes a table with two tensor and returns the component-wise subtraction between them.

m=nn.CSubTable()
=m:forward({torch.ones(5)*2.2,torch.ones(5)})
 1.2000
 1.2000
 1.2000
 1.2000
 1.2000
[torch.DoubleTensor of dimension 5]
### CMulTable ###

Takes a table of tensors and outputs the multiplication of all of them.

ii = {torch.ones(5)*2,torch.ones(5)*3,torch.ones(5)*4}
m=nn.CMulTable()
=m:forward(ii)
 24
 24
 24
 24
 24
[torch.DoubleTensor of dimension 5]
### CDivTable ###

Takes a table with two tensor and returns the component-wise division between them.

m=nn.CDivTable()
=m:forward({torch.ones(5)*2.2,torch.ones(5)*4.4})
 0.5000
 0.5000
 0.5000
 0.5000
 0.5000
[torch.DoubleTensor of dimension 5]
# Criterions #

Criterions are helpful to train a neural network. Given an input and a target, they compute a gradient according to a given loss function. AbsCriterion and MSECriterion are perfect for regression problems, while ClassNLLCriterion is the criterion of choice when dealing with classification.

Criterions are serializable.

## Criterion ##

This is an abstract class which declares methods defined in all criterions. This class is serializable.

### [output] forward(input, target) ###

Given an input and a target, compute the loss function associated to the criterion and return the result. In general input and target are tensors, but some specific criterions might require some other type of object.

The output returned should be a scalar in general.

The state variable self.output should be updated after a call to forward().

### [gradInput] backward(input, target) ###

Given an input and a target, compute the gradients of the loss function associated to the criterion and return the result.In general input, target and gradInput are tensors, but some specific criterions might require some other type of object.

The state variable self.gradInput should be updated after a call to backward().

### State variable: output ###

State variable which contains the result of the last forward(input, target) call.

### State variable: gradInput ###

State variable which contains the result of the last backward(input, target) call.

## AbsCriterion ##
criterion = AbsCriterion()

Creates a criterion that measures the mean absolute value between n elements in the input x and output y:

loss(x,y) = 1/n \sum |x_i-y_i|.

If x and y are d-dimensional Tensors with a total of n elements, the sum operation still operates over all the elements, and divides by n.

The division by n can be avoided if one sets the internal variable sizeAverage to false:

criterion = nn.AbsCriterion()
criterion.sizeAverage = false
## ClassNLLCriterion ##
criterion = ClassNLLCriterion()

The negative log likelihood criterion. It is useful to train a classication problem with n classes. The input given through a forward() is expected to contain log-probabilities of each class: input has to be a 1D tensor of size n. Obtaining log-probabilities in a neural network is easily achieved by adding a LogSoftMax layer in the last layer of your neural network.

This criterion expect a class index (1 to the number of class) as target when calling forward(input, target) and backward(input, target).

The loss can be described as:

loss(x, class) = forward(x, class) = -x[class]

The following is a code fragment showing how to make a gradient step given an input x, a desired output y (an integer 1 to n, in this case n = 2 classes), a network mlp and a learning rate learningRate:

function gradUpdate(mlp,x,y,learningRate)
  local criterion = nn.ClassNLLCriterion()
  pred = mlp:forward(x)
  local err = criterion:forward(pred, y); 
  mlp:zeroGradParameters();
  local t = criterion:backward(pred, y);
  mlp:backward(x, t);
  mlp:updateParameters(learningRate);
end
## MarginCriterion ##
criterion = MarginCriterion()

Creates a criterion that optimizes a two-class classification hinge loss (margin-based loss) between input x (a Tensor of dimension 1) and output y (which is a scalar, either 1 or -1) :

loss(x,y) = forward(x,y) = max(0,m- y x).

m is the margin, which is by default 1.

criterion = MarginCriterion(marginValue)

sets a different value of m.

Example:

require "nn"

function gradUpdate(mlp, x, y, criterion, learningRate)
  local pred = mlp:forward(x)
  local err = criterion:forward(pred, y)
  local gradCriterion = criterion:backward(pred, y)
  mlp:zeroGradParameters()
  mlp:backward(x, gradCriterion)
  mlp:updateParameters(learningRate)
end

mlp=nn.Sequential()
mlp:add(nn.Linear(5,1))

x1=torch.rand(5)
x2=torch.rand(5)
criterion=nn.MarginCriterion(1)

for i=1,1000 do
    gradUpdate(mlp,x1,1,criterion,0.01)
    gradUpdate(mlp,x2,-1,criterion,0.01)
end

print(mlp:forward(x1))
print(mlp:forward(x2))

print(criterion:forward(mlp:forward(x1),1))
print(criterion:forward(mlp:forward(x2),-1))

gives the output:

 1.0043
[torch.Tensor of dimension 1]


-1.0061
[torch.Tensor of dimension 1]

0
0

i.e. the mlp successfully separates the two data points such that they both have a margin of 1, and hence a loss of 0.

## MultiMarginCriterion ##
criterion = MultiMarginCriterion()

Creates a criterion that optimizes a multi-class classification hinge loss (margin-based loss) between input x (a Tensor of dimension 1) and output y (which is a target class index, 1 <= y <= x:size(1)) :

loss(x,y) = forward(x,y) = sum_i(max(0, 1 - (x[y] - x[i]))) / x:size(1)

where i = 1 to x:size(1) and i ~= y

## MSECriterion ##
criterion = MSECriterion()

Creates a criterion that measures the mean squared error between n elements in the input x and output y:

loss(x,y) = forward(x,y) = 1/n \sum |x_i-y_i|^2 .

If x and y are d-dimensional Tensors with a total of n elements, the sum operation still operates over all the elements, and divides by n. The two tensors must have the same number of elements (but their sizes might be different...)

The division by n can be avoided if one sets the internal variable sizeAverage to false:

criterion = nn.MSECriterion()
criterion.sizeAverage = false
## MultiCriterion ##
criterion = MultiCriterion()

This returns a Criterion which is a weighted sum of other Criterion. Criterions are added using the method:

criterion:add(singleCriterion, weight)

where weight is a scalar.

## HingeEmbeddingCriterion ##
criterion = HingeEmbeddingCriterion()

Creates a criterion that measures the loss given an input x which is a 1-dimensional vector and a label y (1 or -1). This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance, and is typically used for learning nonlinear embeddings or semi-supervised learning.

loss(x,y) = forward(x,y) = x, if y=1 = max(0,margin - x), if y=-1

The margin has a default value of 1, or can be set in the constructor:

criterion = HingeEmbeddingCriterion(marginValue)

Example use:

-- imagine we have one network we are interested in, it is called "p1_mlp"
p1_mlp= nn.Sequential(); p1_mlp:add(nn.Linear(5,2))

-- But we want to push examples towards or away from each other
-- so we make another copy of it called p2_mlp
-- this *shares* the same weights via the set command, but has its own set of temporary gradient storage
-- that's why we create it again (so that the gradients of the pair don't wipe each other)
p2_mlp= nn.Sequential(); p2_mlp:add(nn.Linear(5,2))
p2_mlp:get(1).weight:set(p1_mlp:get(1).weight)
p2_mlp:get(1).bias:set(p1_mlp:get(1).bias)

-- we make a parallel table that takes a pair of examples as input. they both go through the same (cloned) mlp
prl = nn.ParallelTable()
prl:add(p1_mlp)
prl:add(p2_mlp)

-- now we define our top level network that takes this parallel table and computes the pairwise distance betweem
-- the pair of outputs
mlp= nn.Sequential()
mlp:add(prl)
mlp:add(nn.PairwiseDistance(1))

-- and a criterion for pushing together or pulling apart pairs
crit=nn.HingeEmbeddingCriterion(1)

-- lets make two example vectors
x=torch.rand(5)
y=torch.rand(5)


-- Use a typical generic gradient update function
function gradUpdate(mlp, x, y, criterion, learningRate)
local pred = mlp:forward(x)
local err = criterion:forward(pred, y)
local gradCriterion = criterion:backward(pred, y)
mlp:zeroGradParameters()
mlp:backward(x, gradCriterion)
mlp:updateParameters(learningRate)
end

-- push the pair x and y together, notice how then the distance between them given
-- by  print(mlp:forward({x,y})[1]) gets smaller
for i=1,10 do
gradUpdate(mlp,{x,y},1,crit,0.01)
print(mlp:forward({x,y})[1])
end


-- pull apart the pair x and y, notice how then the distance between them given
-- by  print(mlp:forward({x,y})[1]) gets larger

for i=1,10 do
gradUpdate(mlp,{x,y},-1,crit,0.01)
print(mlp:forward({x,y})[1])
end
## L1HingeEmbeddingCriterion ##
criterion = L1HingeEmbeddingCriterion(margin)

Creates a criterion that measures the loss given an input x = {x1,x2}, a table of two tensors, and a label y (1 or -1): This is used for measuring whether two inputs are similar or dissimilar, using the L1 distance, and is typically used for learning nonlinear embeddings or semi-supervised learning.

loss(x,y) = forward(x,y) = ||x1-x2||_1, if y=1 = max(0,margin - ||x1-x2||_1), if y=-1

The margin has a default value of 1, or can be set in the constructor:

criterion = L1HingeEmbeddingCriterion(marginValue)
## CosineEmbeddingCriterion ##
criterion = nn.CosineEmbeddingCriterion(margin)

Creates a criterion that measures the loss given an input x = {x1,x2}, a table of two tensors, and a label y (1 or -1): This is used for measuring whether two inputs are similar or dissimilar, using the cosine distance, and is typically used for learning nonlinear embeddings or semi-supervised learning.

margin should be a number from -1 to 1, 0 to 0.5 is suggested. Forward and Backward have to be used alternately. If margin is missing, the default value is 0.

The loss function is: loss(x,y) = forward(x,y) = 1-cos(x1, x2), if y=1 = max(0,cos(x1, x2)-margin), if y=-1

## MarginRankingCriterion ##
criterion = nn.MarginRankingCriterion(margin)

Creates a criterion that measures the loss given an input x = {x1,x2}, a table of two Tensors of size 1 (they contain only scalars), and a label y (1 or -1):

If y = 1 then it assumed the first input should be ranked higher (have a larger value) than the second input, and vice-versa for y = -1.

The loss function is: loss(x,y) = forward(x,y) = max(0,-y*(x[1]-x[2])+margin)

Example:

p1_mlp= nn.Linear(5,2)
p2_mlp= p1_mlp:clone('weight','bias')

prl=nn.ParallelTable()
prl:add(p1_mlp)
prl:add(p2_mlp)
  
mlp1=nn.Sequential()
mlp1:add(prl)
mlp1:add(nn.DotProduct())
 
mlp2=mlp1:clone('weight','bias')

mlpa=nn.Sequential()
prla=nn.ParallelTable()
prla:add(mlp1)
prla:add(mlp2)
mlpa:add(prla)

crit=nn.MarginRankingCriterion(0.1)

x=torch.randn(5)
y=torch.randn(5)
z=torch.randn(5)


-- Use a typical generic gradient update function
function gradUpdate(mlp, x, y, criterion, learningRate)
 local pred = mlp:forward(x)
 local err = criterion:forward(pred, y)
 local gradCriterion = criterion:backward(pred, y)
 mlp:zeroGradParameters()
 mlp:backward(x, gradCriterion)
 mlp:updateParameters(learningRate)
end

for i=1,100 do
 gradUpdate(mlpa,{{x,y},{x,z}},1,crit,0.01)
 if true then 
      o1=mlp1:forward{x,y}[1]; 
      o2=mlp2:forward{x,z}[1]; 
      o=crit:forward(mlpa:forward{{x,y},{x,z}},1)
      print(o1,o2,o)
  end
end

print "--"

for i=1,100 do
 gradUpdate(mlpa,{{x,y},{x,z}},-1,crit,0.01)
 if true then 
      o1=mlp1:forward{x,y}[1]; 
      o2=mlp2:forward{x,z}[1]; 
      o=crit:forward(mlpa:forward{{x,y},{x,z}},-1)
      print(o1,o2,o)
  end
end
# Training a neural network #

Training a neural network is easy with a simple for loop. While doing your own loop provides great flexibility, you might want sometimes a quick way of training neural networks. StochasticGradient, a simple class which does the job for you is provided as standard.

## StochasticGradient ##

StochasticGradient is a high-level class for training neural networks, using a stochastic gradient algorithm. This class is serializable.

### StochasticGradient(module, criterion) ###

Create a StochasticGradient class, using the given Module and Criterion. The class contains several parameters you might want to set after initialization.

### train(dataset) ###

Train the module and criterion given in the constructor over dataset, using the internal parameters.

StochasticGradient expect as a dataset an object which implements the operator dataset[index] and implements the method dataset:size(). The size() methods returns the number of examples and dataset[i] has to return the i-th example.

An example has to be an object which implements the operator example[field], where field might take the value 1 (input features) or 2 (corresponding label which will be given to the criterion). The input is usually a Tensor (except if you use special kind of gradient modules, like table layers). The label type depends of the criterion. For example, the MSECriterion expects a Tensor, but the ClassNLLCriterion except a integer number (the class).

Such a dataset is easily constructed by using Lua tables, but it could any C object for example, as long as required operators/methods are implemented. See an example.

### Parameters ###

StochasticGradient has several field which have an impact on a call to train().

  • learningRate: This is the learning rate used during training. The update of the parameters will be parameters = parameters - learningRate * parameters_gradient. Default value is 0.01.
  • learningRateDecay: The learning rate decay. If non-zero, the learning rate (note: the field learningRate will not change value) will be computed after each iteration (pass over the dataset) with: current_learning_rate =learningRate / (1 + iteration * learningRateDecay)
  • maxIteration: The maximum number of iteration (passes over the dataset). Default is 25.
  • shuffleIndices: Boolean which says if the examples will be randomly sampled or not. Default is true. If false, the examples will be taken in the order of the dataset.
  • hookExample: A possible hook function which will be called (if non-nil) during training after each example forwarded and backwarded through the network. The function takes (self, example) as parameters. Default is nil.
  • hookIteration: A possible hook function which will be called (if non-nil) during training after a complete pass over the dataset. The function takes (self, iteration) as parameters. Default is nil.
## Example of training using StochasticGradient ##

We show an example here on a classical XOR problem.

Dataset

We first need to create a dataset, following the conventions described in StochasticGradient.

dataset={};
function dataset:size() return 100 end -- 100 examples
for i=1,dataset:size() do 
  local input = torch.randn(2);     -- normally distributed example in 2d
  local output = torch.Tensor(1);
  if input[1]*input[2]>0 then     -- calculate label for XOR function
    output[1] = -1;
  else
    output[1] = 1
  end
  dataset[i] = {input, output}
end

Neural Network

We create a simple neural network with one hidden layer.

require "nn"
mlp = nn.Sequential();  -- make a multi-layer perceptron
inputs = 2; outputs = 1; HUs = 20; -- parameters
mlp:add(nn.Linear(inputs, HUs))
mlp:add(nn.Tanh())
mlp:add(nn.Linear(HUs, outputs))

Training

We choose the Mean Squared Error criterion and train the beast.

criterion = nn.MSECriterion()  
trainer = nn.StochasticGradient(mlp, criterion)
trainer.learningRate = 0.01
trainer:train(dataset)

Test the network

x = torch.Tensor(2)
x[1] =  0.5; x[2] =  0.5; print(mlp:forward(x))
x[1] =  0.5; x[2] = -0.5; print(mlp:forward(x))
x[1] = -0.5; x[2] =  0.5; print(mlp:forward(x))
x[1] = -0.5; x[2] = -0.5; print(mlp:forward(x))

You should see something like:

> x = torch.Tensor(2)
> x[1] =  0.5; x[2] =  0.5; print(mlp:forward(x))

-0.3490
[torch.Tensor of dimension 1]

> x[1] =  0.5; x[2] = -0.5; print(mlp:forward(x))

 1.0561
[torch.Tensor of dimension 1]

> x[1] = -0.5; x[2] =  0.5; print(mlp:forward(x))

 0.8640
[torch.Tensor of dimension 1]

> x[1] = -0.5; x[2] = -0.5; print(mlp:forward(x))

-0.2941
[torch.Tensor of dimension 1]
## Example of manual training of a neural network ##

We show an example here on a classical XOR problem.

Neural Network

We create a simple neural network with one hidden layer.

require "nn"
mlp = nn.Sequential();  -- make a multi-layer perceptron
inputs = 2; outputs = 1; HUs = 20; -- parameters
mlp:add(nn.Linear(inputs, HUs))
mlp:add(nn.Tanh())
mlp:add(nn.Linear(HUs, outputs))

Loss function

We choose the Mean Squared Error criterion.

criterion = nn.MSECriterion()  

Training

We create data on the fly and feed it to the neural network.

for i = 1,2500 do
  -- random sample
  local input= torch.randn(2);     -- normally distributed example in 2d
  local output= torch.Tensor(1);
  if input[1]*input[2] > 0 then  -- calculate label for XOR function
    output[1] = -1
  else
    output[1] = 1
  end

  -- feed it to the neural network and the criterion
  criterion:forward(mlp:forward(input), output)

  -- train over this example in 3 steps
  -- (1) zero the accumulation of the gradients
  mlp:zeroGradParameters()
  -- (2) accumulate gradients
  mlp:backward(input, criterion:backward(mlp.output, output))
  -- (3) update parameters with a 0.01 learning rate
  mlp:updateParameters(0.01)
end

Test the network

x = torch.Tensor(2)
x[1] =  0.5; x[2] =  0.5; print(mlp:forward(x))
x[1] =  0.5; x[2] = -0.5; print(mlp:forward(x))
x[1] = -0.5; x[2] =  0.5; print(mlp:forward(x))
x[1] = -0.5; x[2] = -0.5; print(mlp:forward(x))

You should see something like:

> x = torch.Tensor(2)
> x[1] =  0.5; x[2] =  0.5; print(mlp:forward(x))

-0.6140
[torch.Tensor of dimension 1]

> x[1] =  0.5; x[2] = -0.5; print(mlp:forward(x))

 0.8878
[torch.Tensor of dimension 1]

> x[1] = -0.5; x[2] =  0.5; print(mlp:forward(x))

 0.8548
[torch.Tensor of dimension 1]

> x[1] = -0.5; x[2] = -0.5; print(mlp:forward(x))

-0.5498
[torch.Tensor of dimension 1]