Machine learning extensions for Vampire
Experiments in Neptune.ai: filipbartek/vampire-ml
To install TensorFlow for GPU with compatible versions of its dependency cudatoolkit
:
conda install tensorflow=*=gpu_*
Before running the experiments for the first time,
it is necessary to build the Vampire prover located in the Git submodule vampire
.
Before running an experiment, configure the following environment variables:
DGLBACKEND=tensorflow
XDG_CACHE_HOME
: Path to a cache directory. System default:$HOME/.cache
VAMPIRE
: Path to a Vampire prover binary. Example:vampire/build/release/bin/vampire
TPTP
: Path to a TPTP library directory. Example:$HOME/TPTP-v7.4.0
Call the module qustions
to run an experiment.
Example calls:
# Train a predicate precedence recommender using a dataset of 1000000 examples
python -m questions questions.max_count=1000000 questions.randomize=[predicate] symbol_type=predicate
# Evaluate a predicate precedence recommender stored in the checkpoint "outputs/2021-02-16/12-28-14/tf_ckpts/epoch/weights.00289.tf" on all validation problems
python -m questions questions.max_count=1000000 questions.randomize=[predicate] symbol_type=predicate restore_checkpoint=outputs/2021-02-16/12-28-14/tf_ckpts/epoch/weights.00289.tf epochs=0 solver_eval.start=-1 solver_eval.iterations=5 solver_eval.problems.train=0 solver_eval.problems.val=null
# Print the supported parameters
python -m questions --help