/Anova-Linear-Regression-Toolbox

Python tool for ANOVA and Linear Regression analysis

Primary LanguagePython

Python tool for ANOVA analysis and Linear regression

This repository provides a Python script for ANOVA and linear regression anaylses.

Content

  • The script, functions.py, is designed to provide necessary functions for one-way ANOVA, two-way ANOVA, simple and multiple linear regression.
  • main.py file is a test script to demonstrate how to use functions with what kind of arguments. It could be used with -w parameter to show output of tests one by one, waiting an input from user.

Example

  • ANOVA1_test_equality function tests the equality of the means among the groups:

    • Input:
      Groups: [[6.9, 5.4, 5.8, 4.6, 4.0], 
      		[8.3, 6.8, 7.8, 9.2, 6.5], 
      		[8.0, 10.5, 8.1, 6.9, 9.3], 
      		[5.8, 3.8, 6.1, 5.6, 6.2]]
      alpha: 0.05
    
    • ANOVA table:
      | Source         |   df  |   SS  |   MS  |   F  |
      |----------------|:-----:|:-----:|:-----:|:----:|
      | Between groups |  3.00 | 38.82 | 12.94 | 9.72 |
      | Within groups  | 16.00 | 21.29 |  1.33 |      |
      | Total          | 19.00 |       |       |      |
    
    • P-value = 0.000684 < alpha = 0.05. Thus, the null hypothesis that the means of the groups are equal is rejected at significance level alpha = 0.05.
  • ANOVA1_CI_linear_combs function calculates simultaneous confidence intervals of linear combinations given as a matrix, and returns a list of confidence intervals holding simultaneously with 1-alpha probability:

    • The function offers different methods for calculating the interval:
      • Scheffe's method
      • Tukey's pairwise comparison
      • Bonferroni correction
      • Sidak's method
      • And the best choice as the function finds the most suitable method for the given linear combinations.
    • Input:
      Groups: [[6.9, 5.4, 5.8, 4.6, 4.0], 
      		[8.3, 6.8, 7.8, 9.2, 6.5], 
      		[8.0, 10.5, 8.1, 6.9, 9.3], 
      		[5.8, 3.8, 6.1, 5.6, 6.2]]
      alpha: 0.05
      Linear combinations C: [[0.5, 0.5, -0.5, -0.5], [0.5, -0.5, 0.5, -0.5]]
    
    • Output:
      Bonferroni:
      	(-1.7758, 0.7758)
      	(-0.9358, 1.6158)
      Scheffe 2.8:
      	(-2.1081, 1.1081)
      	(-1.2681, 1.9481)
      Sidak:
      	(-1.7725, 0.7725)
      	(-0.9325, 1.6125)
      Tukey:
      Error! Given C matrix is not valid for Tukey (expecting pairwise comparisons)
    
  • Mult_LR_Least_squares function calculate the least square estimates for the beta vector and the biased and unbiased sigma estimators:

    • Input:
      |  x0 | Height | Weight | Distance |
      |:---:|:------:|:------:|:--------:|
      | 1.0 |  42.8  |  40.0  |   37.0   |
      | 1.0 |  63.5  |  93.5  |   49.5   |
      | 1.0 |  37.5  |  35.5  |   34.5   |
      | 1.0 |  39.5  |  30.0  |   36.0   |
      | 1.0 |  45.5  |  52.0  |   43.0   |
      | 1.0 |  38.5  |  17.0  |   28.0   |
      | 1.0 |  43.0  |  38.5  |   37.0   |
      | 1.0 |  22.5  |   8.5  |   20.0   |
      | 1.0 |  37.0  |  33.0  |   33.5   |
      | 1.0 |  23.5  |   9.5  |   30.5   |
      | 1.0 |  33.0  |  21.0  |   38.5   |
      | 1.0 |  58.0  |  79.0  |   47.0   |
    
    • Output:
      BetaHat: [21.00839777  0.19635663  0.19082778] 
      Biased Sigma Square Hat: 11.6594
      Unbiased Sigma Square Hat: 15.5459