/google_ml_kit_flutter

A flutter plugin that implements Google's standalone ML Kit

Primary LanguageDartMIT LicenseMIT

Google's ML Kit for Flutter

Google's ML Kit for Flutter is a set of Flutter plugins that enable Flutter apps to use Google's standalone ML Kit.

Features

Vision APIs

Feature Plugin Source Code Android iOS
Barcode Scanning google_mlkit_barcode_scanning Pub Version GitHub
Face Detection google_mlkit_face_detection Pub Version GitHub
Face Mesh Detection (Beta) google_mlkit_face_mesh_detection Pub Version GitHub
Text Recognition v2 google_mlkit_text_recognition Pub Version GitHub
Image Labeling google_mlkit_image_labeling Pub Version GitHub
Object Detection and Tracking google_mlkit_object_detection Pub Version GitHub
Digital Ink Recognition google_mlkit_digital_ink_recognition Pub Version GitHub
Pose Detection (Beta) google_mlkit_pose_detection Pub Version GitHub
Selfie Segmentation (Beta) google_mlkit_selfie_segmentation Pub Version GitHub
Subject Segmentation (Beta) google_mlkit_subject_segmentation Pub Version GitHub
Document Scanner (Beta) google_mlkit_document_scanner Pub Version GitHub

Natural Language APIs

Feature Plugin Source Code Android iOS
Language Identification google_mlkit_language_id Pub Version GitHub
On-Device Translation google_mlkit_translation Pub Version GitHub
Smart Reply google_mlkit_smart_reply Pub Version GitHub
Entity Extraction (Beta) google_mlkit_entity_extraction Pub Version GitHub

PLEASE READ THIS before continuing or posting a new issue:

  • Google's ML Kit was build only for mobile platforms: iOS and Android apps. Web or any other platform is not supported, you can request support for those platform to Google in their repo.

  • This plugin is not sponsored or maintained by Google. The authors are developers excited about Machine Learning that wanted to expose Google's native APIs to Flutter.

  • Google's ML Kit APIs are only developed natively for iOS and Android. This plugin uses Flutter Platform Channels as explained here.

    Messages are passed between the client (the app/plugin) and host (platform) using platform channels as illustrated in this diagram:

    Messages and responses are passed asynchronously, to ensure the user interface remains responsive. To read more about platform channels go here.

    Because this plugin uses platform channels, no Machine Learning processing is done in Flutter/Dart, all the calls are passed to the native platform using MethodChannel in Android and FlutterMethodChannel in iOS, and executed using Google's native APIs. Think of this plugin as a bridge between your app and Google's native ML Kit APIs. This plugin only passes the call to the native API and the processing is done by Google's API. It is important that you understand this concept when it comes to debugging errors for your ML model and/or app.

  • Since the plugin uses platform channels, you may encounter issues with the native API. Before submitting a new issue, identify the source of the issue. You can run both iOS and/or Android native example apps by Google and make sure that the issue is not reproducible with their native examples. If you can reproduce the issue in their apps then report the issue to Google. The authors do not have access to the source code of their native APIs, so you need to report the issue to them. If you find that their example apps are okay and still you have an issue using this plugin, then look at our closed and open issues. If you cannot find anything that can help you then report the issue and provide enough details. Be patient, someone from the community will eventually help you.

Migrating from ML Kit for Firebase to the new standalone ML Kit SDK

When Migrating from ML Kit for Firebase to the new standalone ML Kit SDK read this guide.

For Android details read this.

For iOS details read this.

Example app

Find the example app here.

Contributing

Contributions are welcome. In case of any problems look at existing issues, if you cannot find anything related to your problem then open an issue. Create an issue before opening a pull request for non trivial fixes. In case of trivial fixes open a pull request directly.