/fluture-node

FP-style HTTP and streaming utils for Node based on Fluture

Primary LanguageJavaScriptMIT LicenseMIT

Fluture Node

FP-style HTTP and streaming utils for Node based on Fluture.

Skip to the Http section for the main code example.

Usage

$ npm install --save fluture fluture-node

On Node 12 and up, this module can be loaded directly with import or require. On Node versions below 12, require or the esm-loader can be used.

API

EventEmitter

Resolve a Future with the first event emitted over the given event emitter under the given event name.

When the Future is cancelled, it removes any trace of itself from the event emitter.

> const emitter = new EventEmitter ();
> setTimeout (() => emitter.emit ('answer', 42), 100);
> once ('answer') (emitter);
Future.of (42);

Buffer

Given an encoding and a Buffer, returns a Future of the result of encoding said buffer using the given encoding. The Future will reject with an Error if the encoding is unknown.

> encode ('utf8') (Buffer.from ('Hello world!'));
'Hello world!'

Stream

Given a Buffer, returns a Future of a Readable stream which will emit the given Buffer before ending.

The stream is wrapped in a Future because creation of a stream causes side-effects if it's not consumed in time, making it safer to pass it around wrapped in a Future.

A Readable stream which ends after emiting zero bytes. Can be useful as an empty Request body, for example.

Buffer all data on a Readable stream into a Future of an Array.

When the Future is cancelled, it removes any trace of itself from the Stream.

> const stream = new Readable ({read: () => {}});
> setTimeout (() => {
.   stream.push ('hello');
.   stream.push ('world');
.   stream.push (null);
. }, 100);
> buffer (stream);
Future.of ([Buffer.from ('hello'), Buffer.from ('world')]);

A version of buffer specialized in Strings.

Takes a charset and a Readable stream of Buffers, and returns a Future containing a String with the fully buffered and encoded result.

Event Loop

Resolves a Future with the given value in the next tick, using process.nextTick. The scheduled job cannot be cancelled and will run before any other jobs, effectively blocking the event loop until it's completed.

> instant ('noodles')
Future.of ('noodles')

Resolves a Future with the given value in the next tick, using setImmediate. This job will run as soon as all other jobs are completed. When the Future is cancelled, the job is unscheduled.

> immediate ('results')
Future.of ('results')

Http

The functions below are to be used in compositions such as the one shown below, in order to cover a wide variety of HTTP-related use cases.

import {reject, map, chain, encase, fork} from 'fluture';
import {retrieve,
        matchStatus,
        followRedirects,
        autoBufferResponse,
        responseToError} from 'fluture-node';

const json = res => (
  chain (encase (JSON.parse)) (autoBufferResponse (res))
);

const notFound = res => (
  chain (({message}) => reject (new Error (message))) (json (res))
);

retrieve ('https://api.github.com/users/Avaq') ({'User-Agent': 'Avaq'})
.pipe (chain (followRedirects (20)))
.pipe (chain (matchStatus (responseToError) ({200: json, 404: notFound})))
.pipe (map (avaq => avaq.name))
.pipe (fork (console.error) (console.log));

The example above will either:

  1. log "Aldwin Vlasblom" to the terminal if nothing weird happens; or
  2. Report a 404 error using the message returned from the server; or
  3. log an error to the console if:
    • a network error occurs;
    • the response code is not what we expect; or
    • the JSON is malformed.

Note that we were in control of the following:

  • How redirects are followed: We use followRedirects with a maxmum of 20 redirects, but we could have used a different redirection function using followRedirectsWith with the aggressiveRedirectionPolicy or even a fully custom policy.

  • How an unexpected status was treated: We passed in a handler to matchStatus. We used responseToError, conviently provided by this library, but we could have used a custom mechanism.

  • How responses with expected status codes are treated: The matchStatus function lets us provide a handler based on the status code of the response. Each handler has full control over the response.

  • How the response body is buffered and decoded: Our json function uses autoBufferResponse to buffer and decode the response according to the mime type provided in the headers. However, we could have used lower level functions, such as bufferResponse or even just buffer.

  • How the response body is parsed: We used Fluture.encase with JSON.parse to parse JSON with a safe failure path. However, we could have used a more refined approach to parsing the JSON, for example by using S.parseJson.

The goal is to give you as much control over HTTP requests and responses as possible, while still keeping boilerplate low by leveraging function composition.

This contrasts with many of the popular HTTP client libraries out there, which either make decisions for you, taking away control in an attempt to provide a smoother usage experience, or which take complicated structures of interacting options to attempt to cater to as many cases as possible.

Constructs a value of type Request to be used as an argument for functions such as sendRequest.

Takes the following arguments:

  1. An Object containing any http options except: auth, host, hostname, path, port, and protocol; because they are part of the URL, and signal; because Fluture handles the cancellation.
  2. A String containing the request URL.
  3. A Future of a Readable stream of Buffers to be used as the request body. Note that the Future must produce a brand new Stream every time it is forked, or if it can't, it is expected to reject with a value of type Error.

See sendRequest for a usage example.

Get the options out of a Request.

Get the url out of a Request.

Get the body out of a Request.

Constructs a value of type Response. These values are typically created for you by functions such as sendRequest. Takes the following arguments:

  1. A Request.
  2. An IncomingMessage assumed to belong to the Request.

Get the request out of a Response.

Get the message out of a Response.

This is the "lowest level" function for making HTTP requests. It does not handle buffering, encoding, content negotiation, or anything really. For most use cases, you can use one of the more specialized functions:

  • send: Make a generic HTTP request.
  • retrieve: Make a GET request.

Given a Request, returns a Future which makes an HTTP request and resolves with the resulting Response. If the Future is cancelled, the request is aborted.

import {attempt} from 'fluture';
import {createReadStream} from 'fs';

const BinaryPostRequest = Request ({
  method: 'POST',
  headers: {'Transfer-Encoding': 'chunked'},
});

const eventualBody = attempt (() => createReadStream ('./data.bin'));

sendRequest (BinaryPostRequest ('https://example.com') (eventualBody));

If you want to use this function to transfer a stream of data, don't forget to set the Transfer-Encoding header to "chunked".

A version of sendRequest specialized in the GET method.

Given a URL and a StrMap of request headers, returns a Future which makes a GET requests to the given resource.

retrieve ('https://api.github.com/users/Avaq') ({'User-Agent': 'Avaq'})

A version of sendRequest for sending arbitrary data to a server. There's also more specific versions for sending common types of data:

Given a MIME type, a request method, a URL, a StrMap of headers, and finally a Buffer, returns a Future which will send the Buffer to the server at the given URL using the given request method, telling it the buffer contains data of the given MIME type.

This function will always send the Content-Type and Content-Length headers, alongside the provided headers. Manually provoding either of these headers override those generated by this function.

A version of send specialized in sending JSON.

Given a request method, a URL, a StrMap of headers and a JavaScript plain object, returns a Future which sends the object to the server at the given URL after JSON-encoding it.

sendJson ('PUT')
         ('https://example.com/users/bob')
         ({Authorization: 'Bearer asd123'})
         ({name: 'Bob', email: 'bob@example.com'});

A version of send specialized in sending form data.

Given a request method, a URL, a StrMap of headers and a JavaScript plain object, returns a Future which sends the object to the server at the given URL after www-form-urlencoding it.

sendForm ('POST')
         ('https://example.com/users/create')
         ({})
         ({name: 'Bob', email: 'bob@example.com'});

Transform a Response based on its status code.

import {chain} from 'fluture';

const processResponse = matchStatus (responseToError) ({
  200: autoBufferResponse,
});

chain (processResponse) (retreive ('https://example.com'));

This is kind of like a switch statement on the status code of the Response message. Or, if you will, a pattern match against the Response type if you imagine it being tagged via the status code.

The first argument is the "default" case, and the second argument is a map of status codes to functions that should have the same type as the first argument.

The resulting function Response -> a has the same signature as the input functions, meaning you can use matchStatus again to "extend" the pattern by passing the old pattern as the "default" case for the new one:

import {reject} from 'fluture';

matchStatus (processResponse) ({
  404: () => reject (new Error ('Example not found!')),
});

A redirection strategy that simply reissues the original Request to the Location specified in the given Response.

If the new location is on an external host, then any confidential headers (such as the cookie header) will be dropped from the new request.

Used in the defaultRedirectionPolicy and the aggressiveRedirectionPolicy.

A redirection strategy that simply reissues the original Request to the Location specified in the given Response, but only if the original request was using the GET method.

If the new location is on an external host, then any confidential headers (such as the cookie header) will be dropped from the new request.

Used in followRedirectsStrict.

A redirection strategy that sends a new GET request based on the original request to the Location specified in the given Response. If the response does not contain a valid location, the request is not redirected.

The original request method and body are discarded, but other options are preserved. If the new location is on an external host, then any confidential headers (such as the cookie header) will be dropped from the new request.

Used in the defaultRedirectionPolicy and the aggressiveRedirectionPolicy.

A redirection strategy that removes any caching headers if present and retries the request, or does nothing if no caching headers were present on the original request.

Used in the defaultRedirectionPolicy.

Carefully follows redirects in strict accordance with RFC2616 Section 10.3.

Redirections with status codes 301, 302, and 307 are only followed if the original request used the GET method, and redirects with status code 304 are left alone for a caching layer to deal with.

This redirection policy is used by default in the followRedirects function. You can extend it, using matchStatus to create a custom redirection policy, as shown in the example:

See also aggressiveRedirectionPolicy.

const redirectToBestOption = () => {
  // Somehow figure out which URL to redirect to.
};

const myRedirectionPolicy = matchStatus (defaultRedirectionPolicy) ({
  300: redirectToBestOption,
  301: redirectUsingGetMethod,
});

retrieve ('https://example.com') ({})
.pipe (chain (followRedirectsWith (myRedirectionPolicy) (10)))

Aggressively follows redirects in mild violation of RFC2616 Section 10.3. In particular, anywhere that a redirection should be interrupted for user confirmation or caching, this policy follows the redirection nonetheless.

Redirections with status codes 301, 302, and 307 are always followed without user intervention, and redirects with status code 304 are retried without conditions if the original request had any conditional headers.

See also defaultRedirectionPolicy.

retrieve ('https://example.com') ({})
.pipe (chain (followRedirectsWith (aggressiveRedirectionPolicy) (10)))

Given a function that take a Response and produces a new Request, and a "maximum" number, recursively keeps resolving new requests until a request is encountered that was seen before, or the maximum number is reached.

See followRedirects for an out-of-the-box redirect- follower. See aggressiveRedirectionPolicy and defaultRedirectionPolicy for additional usage examples.

Given the maximum numbers of redirections, follows redirects according to the default redirection policy.

See the Http section for a usage example.

This function "tags" a Response based on a given status code. If the response status matches the given status code, the returned Future will resolve. If it doesn't, the returned Future will reject.

See also matchStatus, which will probably be more useful in most cases.

The idea is that you can compose this function with one that returns a Response, and reject any responses that don't meet the expected status code.

In combination with responseToError, you can then flatten it back into the outer Future. The usage example under the Http section shows this.

A version of buffer specialized in IncomingMessages.

See also bufferResponse and autoBufferMessage.

Given a charset and an IncomingMessage, returns a Future with the buffered, encoded, message body.

A composition of Response.message and bufferMessage for your convenience.

See also autoBufferResponse.

Given an IncomingMessage, buffers and decodes the message body using the charset provided in the message headers. Falls back to UTF-8 if the charset was not provided.

Returns a Future with the buffered, encoded, message body.

See also bufferMessage.

A composition of Response.message and autoBufferMessage for your convenience.

See also bufferResponse.

Given a Response, returns a rejected Future of an instance of Error with a message based on the content of the response.