/tensorflow-nlp

NLP and Text Generation Experiments in TensorFlow 2.x / 1.x

Primary LanguageJupyter NotebookMIT LicenseMIT

	Code has been run on Google Colab, thanks Google for providing computational resources

Contents


Text Classification

└── finch/tensorflow2/text_classification/imdb
	│
	├── data
	│   └── glove.840B.300d.txt          # pretrained embedding, download and put here
	│   └── make_data.ipynb              # step 1. make data and vocab: train.txt, test.txt, word.txt
	│   └── train.txt  		     # incomplete sample, format <label, text> separated by \t 
	│   └── test.txt   		     # incomplete sample, format <label, text> separated by \t
	│   └── train_bt_part1.txt  	     # (back-translated) incomplete sample, format <label, text> separated by \t
	│
	├── vocab
	│   └── word.txt                     # incomplete sample, list of words in vocabulary
	│	
	└── main
		└── sliced_rnn.ipynb         # step 2: train and evaluate model
		└── ...
└── finch/tensorflow2/text_classification/clue
	│
	├── data
	│   └── make_data.ipynb              # step 1. make data and vocab
	│   └── train.txt  		     # download from clue benchmark
	│   └── test.txt   		     # download from clue benchmark
	│
	├── vocab
	│   └── label.txt                    # list of emotion labels
	│	
	└── main
		└── bert_finetune.ipynb      # step 2: train and evaluate model
		└── ...

Text Matching

└── finch/tensorflow2/text_matching/snli
	│
	├── data
	│   └── glove.840B.300d.txt       # pretrained embedding, download and put here
	│   └── download_data.ipynb       # step 1. run this to download snli dataset
	│   └── make_data.ipynb           # step 2. run this to generate train.txt, test.txt, word.txt 
	│   └── train.txt  		  # incomplete sample, format <label, text1, text2> separated by \t 
	│   └── test.txt   		  # incomplete sample, format <label, text1, text2> separated by \t
	│
	├── vocab
	│   └── word.txt                  # incomplete sample, list of words in vocabulary
	│	
	└── main              
		└── dam.ipynb      	  # step 3. train and evaluate model
		└── esim.ipynb      	  # step 3. train and evaluate model
		└── ......
└── finch/tensorflow2/text_matching/chinese
	│
	├── data
	│   └── make_data.ipynb           # step 1. run this to generate char.txt and char.npy
	│   └── train.csv  		  # incomplete sample, format <text1, text2, label> separated by comma 
	│   └── test.csv   		  # incomplete sample, format <text1, text2, label> separated by comma
	│
	├── vocab
	│   └── cc.zh.300.vec             # pretrained embedding, download and put here
	│   └── char.txt                  # incomplete sample, list of chinese characters
	│   └── char.npy                  # saved pretrained embedding matrix for this task
	│	
	└── main              
		└── pyramid.ipynb      	  # step 2. train and evaluate model
		└── esim.ipynb      	  # step 2. train and evaluate model
		└── ......
└── finch/tensorflow2/text_matching/ant
	│
	├── data
	│   └── make_data.ipynb           # step 1. run this to generate char.txt and char.npy
	│   └── train.json           	  # incomplete sample, format <text1, text2, label> separated by comma 
	│   └── dev.json   		  # incomplete sample, format <text1, text2, label> separated by comma
	│
	├── vocab
	│   └── cc.zh.300.vec             # pretrained embedding, download and put here
	│   └── char.txt                  # incomplete sample, list of chinese characters
	│   └── char.npy                  # saved pretrained embedding matrix for this task
	│	
	└── main              
		└── pyramid.ipynb      	  # step 2. train and evaluate model
		└── bert.ipynb      	  # step 2. train and evaluate model
		└── ......

Intent Detection and Slot Filling

└── finch/tensorflow2/spoken_language_understanding/atis
	│
	├── data
	│   └── glove.840B.300d.txt           # pretrained embedding, download and put here
	│   └── make_data.ipynb               # step 1. run this to generate vocab: word.txt, intent.txt, slot.txt 
	│   └── atis.train.w-intent.iob       # incomplete sample, format <text, slot, intent>
	│   └── atis.test.w-intent.iob        # incomplete sample, format <text, slot, intent>
	│
	├── vocab
	│   └── word.txt                      # list of words in vocabulary
	│   └── intent.txt                    # list of intents in vocabulary
	│   └── slot.txt                      # list of slots in vocabulary
	│	
	└── main              
		└── bigru_clr.ipynb               # step 2. train and evaluate model
		└── ...

Retrieval Dialog


Semantic Parsing

└── finch/tensorflow2/semantic_parsing/tree_slu
	│
	├── data
	│   └── glove.840B.300d.txt     	# pretrained embedding, download and put here
	│   └── make_data.ipynb           	# step 1. run this to generate vocab: word.txt, intent.txt, slot.txt 
	│   └── train.tsv   		  	# incomplete sample, format <text, tokenized_text, tree>
	│   └── test.tsv    		  	# incomplete sample, format <text, tokenized_text, tree>
	│
	├── vocab
	│   └── source.txt                	# list of words in vocabulary for source (of seq2seq)
	│   └── target.txt                	# list of words in vocabulary for target (of seq2seq)
	│	
	└── main
		└── lstm_seq2seq_tf_addons.ipynb           # step 2. train and evaluate model
		└── ......
		

Knowledge Graph Completion

└── finch/tensorflow2/knowledge_graph_completion/wn18
	│
	├── data
	│   └── download_data.ipynb       	# step 1. run this to download wn18 dataset
	│   └── make_data.ipynb           	# step 2. run this to generate vocabulary: entity.txt, relation.txt
	│   └── wn18  		          	# wn18 folder (will be auto created by download_data.ipynb)
	│   	└── train.txt  		  	# incomplete sample, format <entity1, relation, entity2> separated by \t
	│   	└── valid.txt  		  	# incomplete sample, format <entity1, relation, entity2> separated by \t 
	│   	└── test.txt   		  	# incomplete sample, format <entity1, relation, entity2> separated by \t
	│
	├── vocab
	│   └── entity.txt                  	# incomplete sample, list of entities in vocabulary
	│   └── relation.txt                	# incomplete sample, list of relations in vocabulary
	│	
	└── main              
		└── distmult_1-N.ipynb    	# step 3. train and evaluate model
		└── ...

Knowledge Base Question Answering


Multi-hop Question Answering

└── finch/tensorflow1/question_answering/babi
	│
	├── data
	│   └── make_data.ipynb           		# step 1. run this to generate vocabulary: word.txt 
	│   └── qa5_three-arg-relations_train.txt       # one complete example of babi dataset
	│   └── qa5_three-arg-relations_test.txt	# one complete example of babi dataset
	│
	├── vocab
	│   └── word.txt                  		# complete list of words in vocabulary
	│	
	└── main              
		└── dmn_train.ipynb
		└── dmn_serve.ipynb
		└── attn_gru_cell.py

Text Visualization


Recommender System

└── finch/tensorflow1/recommender/movielens
	│
	├── data
	│   └── make_data.ipynb           		# run this to generate vocabulary
	│
	├── vocab
	│   └── user_job.txt
	│   └── user_id.txt
	│   └── user_gender.txt
	│   └── user_age.txt
	│   └── movie_types.txt
	│   └── movie_title.txt
	│   └── movie_id.txt
	│	
	└── main              
		└── dnn_softmax.ipynb
		└── ......

Multi-turn Dialogue Rewriting

└── finch/tensorflow1/multi_turn_rewrite/chinese/
	│
	├── data
	│   └── make_data.ipynb         # run this to generate vocab, split train & test data, make pretrained embedding
	│   └── corpus.txt		# original data downloaded from external
	│   └── train_pos.txt		# processed positive training data after {make_data.ipynb}
	│   └── train_neg.txt		# processed negative training data after {make_data.ipynb}
	│   └── test_pos.txt		# processed positive testing data after {make_data.ipynb}
	│   └── test_neg.txt		# processed negative testing data after {make_data.ipynb}
	│
	├── vocab
	│   └── cc.zh.300.vec		# fastText pretrained embedding downloaded from external
	│   └── char.npy		# chinese characters and their embedding values (300 dim)	
	│   └── char.txt		# list of chinese characters used in this project 
	│	
	└── main              
		└── baseline_lstm_train.ipynb
		└── baseline_lstm_predict.ipynb
		└── ...

Generative Dialog

└── finch/tensorflow1/free_chat/chinese_lccc
	│
	├── data
	│   └── LCCC-base.json           	# raw data downloaded from external
	│   └── LCCC-base_test.json         # raw data downloaded from external
	│   └── make_data.ipynb           	# step 1. run this to generate vocab {char.txt} and data {train.txt & test.txt}
	│   └── train.txt           		# processed text file generated by {make_data.ipynb}
	│   └── test.txt           			# processed text file generated by {make_data.ipynb}
	│
	├── vocab
	│   └── char.txt                	# list of chars in vocabulary for chinese
	│   └── cc.zh.300.vec			# fastText pretrained embedding downloaded from external
	│   └── char.npy			# chinese characters and their embedding values (300 dim)	
	│	
	└── main
		└── lstm_seq2seq_train.ipynb    # step 2. train and evaluate model
		└── lstm_seq2seq_infer.ipynb    # step 4. model inference
		└── ...
  • Task: Large-scale Chinese Conversation Dataset

      Training Data: 5000000 (sampled due to small memory), Testing Data: 19008
    
    • Data

    • Model

      Code Model Env Test Case Perplexity
      <Notebook> Transformer Encoder + LSTM Generator TF1 <Notebook> 42.465
      <Notebook> LSTM Encoder + LSTM Generator TF1 <Notebook> 41.250
      <Notebook> LSTM Encoder + LSTM Pointer-Generator TF1 <Notebook> 36.525
    • If you want to deploy model in Java production

       └── FreeChatInference
       	│
       	├── data
       	│   └── transformer_export/
       	│   └── char.txt
       	│   └── libtensorflow-1.14.0.jar
       	│   └── tensorflow_jni.dll
       	│
       	└── src              
       		└── ModelInference.java
      
      • <Notebook> Java Inference

      • If you don't know the input and output node names in Java, you can display the node names:

         !saved_model_cli show --dir ../model/xxx/1587959473/ --tag_set serve --signature_def serving_default
        
    • Large Pre-trained GPT

      Test Case Model Env Author
      <Notebook> GPT LCCC base TF1 + bert4keras Tsinghua University
      <Notebook> GPT LCCC large TF1 + bert4keras Tsinghua University
      <Notebook> NEZHA LM TF1 + bert4keras Jianlin Su
    • Diverse Response Comparsion

      问题 / 模型回复 Our RNN GPT base GPT large Nezha
      Q: 你好 A: 你好 A: 你好 A: 你好,你好,我是大好人。 A: 您好
      Q: 早上好 A: 早上好 A: 早上好,好久不见 A: 早上好! A: 早啊早啊
      Q: 晚上好 A: 晚上好 A: 你好 A: 好久不见 A: 晚上好!
      Q: 再见 A: 再见 A: 不见 A: 你是不是不爱我了 A: 我要走了
      Q: 好久不见 A: 好久不见 A: 是呀,好久不见。 A: 是啊,好久不见。 A: 是啊,最近怎么样啊
      Q: 想死你了 A: 我也是 A: 我也想你, A: 我不信 A: 哈哈哈哈哈
      Q: 谢谢你 A: 不客气 A: 不用谢 A: 不用 A: 不谢不谢,
      Q: 爱你 A: 爱你 A: 你是爱我 A: 我也爱你, A: 我也爱你,你最美
      Q: 你叫什么名字 A: 你猜 A: 我也想知道 A: 叫你 A: 你是不是想说我的名字太俗了
      Q: 你几岁了 A: 问女孩子年龄可不是绅士所为哦 ~ A: 你猜 A: 你猜 A: 我不知道
      Q: 现在几点了 A: 11点 A: 你说呢? A: 十二点 A: 我也不知道啊
      Q: 今天天气怎么样 A: 下雨了 A: 今天很冷,但是我还是觉得很冷 A: 很好 A: 不错
      Q: 我们现在在哪里 A: 在这里 A: 我在这里等你呢 A: 我不知道你在说什么 A: 在我们宿舍楼下。。。
      Q: 你能给我讲个笑话吗 A: 不能 A: 讲个笑话 A: 讲给谁听 A: 不能
      Q: 你是男孩还是女孩呀 A: 我是萌妹纸 A: 你猜 A: 你猜呀 A: 我是萌妹纸
      Q: 你会几种语言呀 A: 你猜 A: 不会 A: 你猜呀~ A: 只会说一句
      Q: 你能陪我玩吗 A: 可以啊 A: 可以 A: 我可以啊 A: 你猜
      Q: 说话可以大声一点吗 A: 可以 A: 可以的 A: 不要 A: 我不
      Q: 天气真好 A: 是的 A: 是啊! A: 天气好是因为有你 A: 是啊。
      Q: 天气太糟糕了 A: 是啊 A: 是啊 A: 是啊 A: 是的
      Q: 下雨了 A: 是的 A: 你们那边也下雨了 A: 是呀 A: 我也是
      Q: 雨好大 A: 今天下雨了 A: 是啊 A: 是的,好大雨 A: 对呀,我们还穿短袖
      Q: 我讨厌艳阳天 A: 我也讨厌艳阳天 A: 我也是。 A: 我喜欢阴天 A: 我喜欢
      Q: 好晒啊 A: 是啊 A: 是啊 A: 是啊!! A: 是啊,不是很热的
      Q: 今天好冷 A: 多穿点衣服 A: 你们都不来 A: 你那儿也冷了 A: 是啊。
      Q: 今天好热 A: 今天热死了 A: 热死我了 A: 对啊 A: 对啊,我都热疯
      Q: 风好大 A: 是啊 A: 风太大了。。。 A: 你不是在上课嘛 A: 嗯嗯嗯,风好大,冷
      Q: 雾太大了看不清路 A: 雾太大了 A: 哈哈,你这是在逗我笑 A: 我也看不清 A: 你是不是傻啊
      Q: 打雷了好可怕 A: 可怕 A: 我们这边也是,我们这边下雨了,我们这边也没有下雨。 A: 是啊 A: 我们这边下雨了
      Q: 下雪了诶 A: 下雪了? A: 是滴! A: 嗯嗯嗯!!好大的雪!! A: 下了一天了
      Q: 好烦啊 A: 我也好烦 A: 我也是 A: 我好烦 A: 我也是
      Q: 好开心 A: 开心就好 A: 你是不是想我了 A: 是呀 A: 哈哈哈,我也是!
      Q: 太激动了 A: 激动什么 A: 我也激动 A: 哈哈,还是不要了 A: 哈哈
      Q: 我好难过 A: 怎么了? A: 我也是,我们都是 A: 不要难过,我陪你 A: 你怎么难过
      Q: 我想哭 A: 抱抱 A: 抱紧你 A: 我不想哭!你不要想太多! A: 哭吧哭吧,我陪你哭
      Q: 太好笑了 A: 笑死我了 A: 你也笑了? A: 我也觉得 A: 哈哈
      Q: 我好伤心 A: 怎么了 A: 你伤心什么 A: 我也是 A: 你是不是想笑死我!!下次再给你拍
      Q: 心好痛 A: 抱抱 A: 你心痛什么 A: 心碎一地了。 A: 怎么了
      Q: 好累啊 A: 加油 A: 你不会还是一个人在寝室吧 A: 好好休息 A: 累了就睡觉
      Q: 我好疲惫 A: 我也是 A: 我也差不多。。 A: 我好困 A: 你不是一直都很疲惫么
      Q: 我爱你 A: 我也爱你 A: 我也是 A: 我们都爱你 A: 爱我就来见面
      Q: 我讨厌你 A: 我也讨厌你 A: 你不是一直很喜欢我 A: 不是我的 A: 我也讨厌你
      Q: 你真是太棒啦 A: 谢谢 A: 你最棒 A: 你也棒棒哒 A: 谢谢!
      Q: 你好厉害啊 A: 哈哈 A: 是不是 A: 你也不差呀 A: 你也可以的
      Q: 吓死我了 A: 哈哈 A: 我都不敢出门了 A: 哈哈哈哈哈!!! A: 哈哈哈哈哈笑死我了
      Q: 我想回家 A: 我也想回家 A: 我也想!! A: 想家的时候回来,想家的时候离开。 A: 回来吧,家真的好啊!
      Q: 我想爸妈了 A: 我也想爸妈 A: 哈哈 A: 我也想 A: 想我吗
      Q: 不知道小孩在家有没有听话 A: 我也不知道 A: 没有 A: 听话的话肯定是会听话的。 A: 我也是听不懂啊
      Q: 想回家撸猫 A: 我也想回家 A: 你也想啊? A: 我们这也有一个 A: 回呀回呀