/Pytorch2TensorRT

CUDA10.0, CUDNN7.5.0, TensorRT5.1.5.0

Primary LanguagePython

  • Pytorch2TensorRT

将Pytorch模型部署到TensorRT的一个简单用法,技术路线为“pytorch model-->onnx file-->TensorRT engine”。

当前仅针对ONNX和TensorRT支持OP可进行转换,如有不支持的OP需编写插件。

软件环境:

TensorRT5.1.5.0
Pytorch1.2
PIL6.2.1
numpy1.17.4

Linux_x86_64
CUDA10.0
CUDNN7.5.0

当前支持:

  • TensorRT FP32
  • TensorRT FP16
  • TensorRT INT8

使用方法:

  1. 从Pytorch模型到ONNX:修改并使用pytoch_to_onnx.py脚本转ONNX,或者独自进行转换;
  2. 利用自行提供的或根据上一步转换好的ONNX文件,进行TensorRT转换:Python main.py,并指定必要的参数;
  3. 使用do_inference.py进行推理验证。

使用示例:

ONNX file to FP16 engine: python main.py --batch_size 32 --mode fp16 --onnx_file_path my_files/centernet.onnx --engine_file_path my_files/test_fp16.engine

推理:python do_inference.py --engine_file_path my_files/test.engine--img_path test_img.jpg--batch_size 1

使用说明:

Pytorch模型转ONNX:

  • 参考脚本pytoch_to_onnx.py,需按照自己的需要定义模型与输入样例,然后转换。

将ONNX转换为INT8的TensorRT引擎,需要:

  1. 准备一个校准集,用于在转换过程中寻找使得转换后的激活值分布与原来的FP32类型的激活值分布差异最小的阈值;
  2. 并写一个校准器类,该类需继承trt.IInt8EntropyCalibrator2父类,并重写get_batch_size, get_batch, read_calibration_cache, write_calibration_cache这几个方法。具体做法参考脚本myCalibrator.py.
  3. 使用时,需额外指定cache_file,该参数是校准集cache文件的路径,会在校准过程中生成,方便下一次校准时快速提取。

参考:

https://github.com/GuanLianzheng/pytorch_to_TensorRT5.git

官方示例:path_to_tensorrt/TensorRT-5.1.5.0/samples/python/int8_caffe_mnist