An attempt to provide a reproducible, automatic, complete end-to-end bootstrap from a minimal number of binary seeds to a supported fully functioning operating system.
git clone https://github.com/fosslinux/live-bootstrap
git submodule update --init --recursive
- Provide a kernel (vmlinuz file) as the name
kernel
in the root of the repository. This must be a 32-bit kernel. ./rootfs.py --qemu
- ensure your account has kvm privileges and qemu installed.- Alternatively, run
./rootfs.py --chroot
to run it in a chroot. - Alternatively, run
./rootfs.py --bwrap
to run it in a bubblewrap sandbox. When user namespaces are supported, this mode is rootless. - Alternatively, run
./rootfs.py
but don’t run the actual virtualization and instead copy sysa/tmp/initramfs to a USB or some other device and boot from bare metal. NOTE: we now require a hard drive. This is currently hardcoded as sda. You also need to putsysc/tmp/disk.img
onto your sda on the bootstrapping machine. - Alternatively, do not use python at all, see "Python-less build" below.
- Alternatively, run
- Wait.
- If you can, observe the many binaries in
/usr/bin
! When the bootstrap is completedbash
is launched providing a shell to explore the system.
This project is a part of the bootstrappable project, a project that aims to be able to build complete computing platforms through the use of source code. When you build a compiler like GCC, you need another C compiler to compile the compiler - turtles all the way down. Even the first GCC compiler was written in C. There has to be a way to break the chain…
There has been significant work on this over the last 5 years, from Jeremiah Orians’ stage0, hex2 and M2-Planet to janneke’s Mes. We have a currently, fully-functioning chain of bootstrapping from the 357-byte hex0 seed to a complete GCC compiler and hence a full Linux operating system. From there, it is trivial to move to other UNIXes. However, there is only currently one vector through which this can be automatically done, GNU Guix.
While the primary author of this project does not believe Guix is a bad project, the great reliance on Guile, the complexity of many of the scripts and the rather steep learning curve to install and run Guix make it a very non plug-and-play solution. Furthermore, there is currently (Jan 2021) no possible way to run the bootstrap from outside of a pre-existing Linux environment. Additionally, Guix uses many scripts and distributed files that cannot be considered source code.
(NOTE: Guix is working on a Full Source Bootstrap, but I’m not completely sure what that entails).
Furthermore, having an alternative bootstrap automation tool allows people to have greater trust in the bootstrap procedure.
Item | Guix | live-bootstrap |
---|---|---|
Total size of seeds [1] | ~30MB (Reduced Source Bootstrap) [2] | ~1KB |
Use of kernel | Linux-Libre Kernel | Any Linux Kernel (2.6+) [3] |
Implementation complete | Yes | No (in development) |
Automation | Almost fully automatic | Optional user customization |
[1]: Both projects only use software licensed under a FSF-approved free software license. Kernel is excluded from seed. [2]: Reiterating that Guix is working on a full source bootstrap, although that still uses guile (~12 MB). [3]: Work is ongoing to use other, smaller POSIX kernels.
That is outside of the scope of this README. Here’s a few things you can look at:
- https://bootstrappable.org
- Trusting Trust Attack (as described by Ken Thompson)
- https://guix.gnu.org/manual/en/html_node/Bootstrapping.html
- Collapse of the Internet (eg CollapseOS)
GNU Guix is currently the furthest along project to automate bootstrapping. However, there are a number of non-auditable files used in many of their packages. Here is a list of file types that we deem unsuitable for bootstrapping.
- Binaries (apart from seed hex0, kaem, kernel).
- Any pre-generated configure scripts, or Makefile.in’s from autotools.
- Pre-generated bison/flex parsers (identifiable through a
.y
file). - Any source code/binaries downloaded within a software’s build system that is outside of our control to verify before use in the build system.
- Any non-free software. (Must be FSF-approved license).
For a more in-depth discussion, see parts.rst.
sysa is the first ‘system’ used in live-bootstrap. We move to a new system after a reboot, which often occurs after the movement to a new kernel. It is run by the seed Linux kernel provided by the user. It compiles everything we need to be able to compile our own Linux kernel. It runs fully in an initramfs and does not rely on disk support in the seed Linux kernel.
sysb is the second 'system' of live-bootstrap. This uses the Linux 4.9.10 kernel compiled within sysa. As we do not rely on disk support in sysa, we need this intermediate system to be able to add the missing binaries to sysc before moving into it. This is executed through kexec from sysa. At this point, a SATA disk IS required.
sysc is the (current) last 'system' of live-bootstrap. This is a continuation
from sysb, executed through util-linux's switch_root
command which moves
the entire rootfs without a reboot. Every package from here on out is compiled
under this system, taking binaries from sysa. Chroot and bubblewrap modes skip
sysb, as it is obviously irrelevant to them.
Python is no longer a requirement to set up the build system. The repository is almost completely in a form where it can be used as the source of a build.
- Download required tarballs into
sysa/distfiles
andsysc/distfiles
. You can use thedownload-distfiles.sh
script. - Copy sysa/stage0-posix/src/* to the root of the repository.
- Copy sysa/stage0-posix/src/bootstrap-seeds/POSIX/x86/kaem-optional-seed to init in the root of the repository.
- Copy sysa/after.kaem to after.kaem
- Create a CPIO archive (eg,
cpio --format newc --create --directory . > ../initramfs
). - Boot your initramfs and kernel.
For chroot based bootstraps you can skip creation of initramfs and instead start bootstrap with
sudo chroot . bootstrap-seeds/POSIX/x86/kaem-optional-seed
It is also recommended to copy everything to a new directory as bootstrapping messes up with files in git repository and cannot be re-run again.