Baseline model DeepLabv3, DeepLabv3+ for Carla-EPE-23, modified from VainF's repository.
Specify the model architecture with '--model ARCH_NAME' and set the output stride using '--output_stride OUTPUT_STRIDE'.
DeepLabV3 | DeepLabV3+ |
---|---|
deeplabv3_resnet50 | deeplabv3plus_resnet50 |
deeplabv3_resnet101 | deeplabv3plus_resnet101 |
deeplabv3_mobilenet | deeplabv3plus_mobilenet |
deeplabv3_hrnetv2_48 | deeplabv3plus_hrnetv2_48 |
deeplabv3_hrnetv2_32 | deeplabv3plus_hrnetv2_32 |
deeplabv3_xception | deeplabv3plus_xception |
Model: DeepLabV3Plus-ResNet101
Dataset | Train Crop | Val Crop | Batch Size | train/val OS | mIoU | Train History |
---|---|---|---|---|---|---|
CityScapes | 768x768 | 1024x2048 | 16 | 16/16 | 0.7711 | W&B |
NightCity | 512x512 | 512x1024 | 16 | 16/16 | 0.5300 | W&B |
/datasets
/cityscapes
/gtFine
/leftImg8bit
/datasets
/NightLab
/train
/image
/label
/val
/image
/label
CityScapes
python main.py --model deeplabv3plus_resnet101 --dataset cityscapes --lr 0.1 --crop_size 768 --batch_size 16 --output_stride 16 --data_root /your_dataset_path/CityScapes --gpu_id 0,1 --run_name set_custom_runname --save_val_results 5
NightCity
main.py --model deeplabv3plus_resnet101 --dataset nightlab --gpu_id 0,1 --lr 0.1 --crop_size 512 --batch_size 16 --output_stride 16 --data_root /your_dataset_path/NightLab/ --run_name set_custom_runname --save_val_results 5
Boosting dataset with synthetic data
to be added
Additional options
-
--run_name
: Determine a custom run name, default is "unnamed" -
--wandb
: Use Weights & Bias monitoring while training - *
--boost_dataset
: Name of synthetic data, only support "carla" atm - *
--boost_data_root
: Root of synthetic data - *
--boost_strength
: The proportion of synthetic data in one batch.$boost _ batch _ size = \textrm{round}(batch_ size \times boost_ strength)$ ,$real_ batch_ size = batch_ size - boost_ batch_ size$
* : Not finalized due to recent changes in Carla source code
[1] Rethinking Atrous Convolution for Semantic Image Segmentation
[2] Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation