/UnModNet

NeurIPS 2020 paper: UnModNet: Learning to Unwrap a Modulo Image for High Dynamic Range Imaging

Primary LanguagePython

UnModNet: Learning to Unwrap a Modulo Image for High Dynamic Range Imaging

By Chu Zhou, Hang Zhao, Jin Han, Chang Xu, Chao Xu, Tiejun Huang, Boxin Shi Network

PDF | SUPP

Abstract

A conventional camera often suffers from over- or under-exposure when recording a real-world scene with a very high dynamic range (HDR). In contrast, a modulo camera with a Markov random field (MRF) based unwrapping algorithm can theoretically accomplish unbounded dynamic range but shows degenerate performances when there are modulus-intensity ambiguity, strong local contrast, and color misalignment. In this paper, we reformulate the modulo image unwrapping problem into a series of binary labeling problems and propose a modulo edge-aware model, named as UnModNet, to iteratively estimate the binary rollover masks of the modulo image for unwrapping. Experimental results show that our approach can generate 12-bit HDR images from 8-bit modulo images reliably, and runs much faster than the previous MRF-based algorithm thanks to the GPU acceleration.

Prerequisites

  • Linux Distributions (tested on Ubuntu 18.04).
  • NVIDIA GPU and CUDA cuDNN
  • Python >= 3.7
  • Pytorch >= 1.1.0
  • cv2
  • numpy
  • tqdm
  • tensorboardX (for training visualization)

Inference

  • To unwrap RGB modulo images (in .npy format and in (H, W, 3) shape):
python execute/infer_LearnMaskNet.py -r checkpoint/checkpoint-mask.pth --data_dir <path_to_modulo_images> --result_dir <path_to_result> --resume_edge_module checkpoint/checkpoint-edge.pth default
  • To unwrap grayscale modulo images (in .npy format and in (H, W, 1) shape):
python execute/infer_LearnMaskNet.py -r checkpoint/checkpoint-mask-gray.pth --data_dir <path_to_modulo_images> --result_dir <path_to_result> --resume_edge_module checkpoint/checkpoint-edge-gray.pth default
  • Use TonemapReinhard_npy.py to visualize the results. Note that the default tonemap method we use is cv2.createTonemapReinhard(intensity=-1.0, light_adapt=0.8, color_adapt=0.0).

Pre-trained models and test examples

https://drive.google.com/drive/folders/10Y8MOr2o2TZzTI5RZUQZQ-0RBezbzhIV?usp=sharing

Training your own model

  1. Make dataset from original data (HDR images in .npy format):

    • make dataset:
    python scripts/make_dataset.py --data_dir <path_to_original_data> --train_dir <path_to_training_dataset> --test_dir <path_to_test_dataset> --training_sample <number_of_training_samples>
    
    • make edge map:
    python scripts/make_edge_map.py --data_dir <path_to_training_dataset>
    
  2. Configure the training parameters:

    • write your own config.json or use ours: config/edge_module.json and config/mask_module.json for two stages respectively
    • edit the learning rate schedule function (LambdaLR) at get_lr_lambda in utils/util.py
  3. Run:

    python execute/train.py -c <path_to_config_file>

Citation

If you find this work helpful to your research, please cite:

@inproceedings{NEURIPS2020_1102a326,
 author = {Zhou, Chu and Zhao, Hang and Han, Jin and Xu, Chang and Xu, Chao and Huang, Tiejun and Shi, Boxin},
 booktitle = {Advances in Neural Information Processing Systems},
 editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin},
 pages = {1559--1570},
 publisher = {Curran Associates, Inc.},
 title = {UnModNet: Learning to Unwrap a Modulo Image for High Dynamic Range Imaging},
 url = {https://proceedings.neurips.cc/paper/2020/file/1102a326d5f7c9e04fc3c89d0ede88c9-Paper.pdf},
 volume = {33},
 year = {2020}
}