/HateBR

HateBR is the first large-scale expert annotated dataset of Brazilian Instagram comments for hate speech and offensive language detection on the web and social media.

DOI

HateBR - Offensive Language and Hate Speech Dataset in Brazilian Portuguese


HateBR is the first large-scale expert annotated dataset of Brazilian Instagram comments for abusive language detection on the web and social media. The HateBR was collected from Brazilian Instagram comments of politicians and manually annotated by specialists. It is composed of 7,000 documents annotated according to three different layers: a binary classification (offensive versus non-offensive comments), offensiveness-level (highly, moderately, and slightly offensive messages), and 9 (nine) hate speech targets (xenophobia, racism, homophobia, sexism, religious intolerance, partyism, apology for the ************, antisemitism, and fatphobia). Each comment was annotated by three different annotators and achieved high inter-annotator agreement. Furthermore, baseline experiments were implemented reaching 85% of the F1-score outperforming the current literature dataset baselines for the Portuguese language. We hope that the proposed expert annotated dataset may foster research on hate speech detection in the Natural Language Processing area.


This repository contains the corpus and the best models presented in the paper (see section "citing"). HateBr.csv file provides 4 (four) columns as described above:

  • 1st column: Instagram comments.
  • 2nd column: Offensive language classification is divided into offensive comments versus non-offensive comments.
  • 3rd column: Offensiveness-level classification is divided into highly offensive, moderately offensive, and slightly offensive.
  • 4th column: Hate speech classification is divided into 9 (nine) different hate speech targets: antisemitism, apology for the ************, fatphobia, homophobia, partyism, racism, religious intolerance, sexism, and xenophobia. At last, offensive & no hate speech comments were also classified.

The following table describes in detail the labels for each proposed layer of annotation:

Offensive LanguageOffensiveness LevelsHate Speech
class label total
offensive 1 3,500
non-offensive 0 3,500
Total 7,000
class label total
highly 3 778
moderately 2 1,044
slightly 1 1,678
non-offensive 0 3,500
Total 7,000
class label total
antisemitism 1 2
apology for the ************ 2 32
fatphobia 3 27
homophobia 4 17
partyism 5 496
racism 6 8
religious intolerance 7 47
sexism 8 97
xenophobia 9 1
offensive & non-hate speech -1 2,773
non-offensive 0 3,500
Total 7,000

In addition, we also provide baseline machine learning results for both tasks: offensive language and hate speech detection. The best-obtained models are available here in .pkl files. File names are organized as [classification (offensive or hate)_representation (ngram or tfidf)_algorithms (nb, svm, mlp or lr)]. For example, the file offensive_tfidf_svm.pkl presents the model of offensive detection with tf-idf representation using the support vector machine algorithm.


CITING

Vargas, F., Carvalho, I., Góes, F. R., Pardo, T.A.S., Benevenuto, F. (2022). HateBR: large expert annotated corpus of Brazilian Instagram comments for offensive language and hate speech detection. Proceedings of the 13th International Conference on Language Resources and Evaluation (LREC 2022), pp.7174–7183. Marseille, France. https://aclanthology.org/2022.lrec-1.777/


Vargas, F., Carvalho, I., Pardo, T.A.S., Benevenuto, F. (2024). Context-Aware and Expert Data Resources for Brazilian Portuguese Hate Speech Detection. Natural Language Processing Journal. Cambridge University Press. pp.1-22. https://www.cambridge.org/core/journals/natural-language-processing/article/contextaware-and-expert-data-resources-for-brazilian-portuguese-hate-speech-detection/7D9019ED5471CD16E320EBED06A6E923#.


BIBTEX

@inproceedings{vargas-etal-2022-hatebr, title = "{H}ate{BR}: A Large Expert Annotated Corpus of {B}razilian {I}nstagram Comments for Offensive Language and Hate Speech Detection", author = "Vargas, Francielle and Carvalho, Isabelle and Rodrigues de G{\'o}es, Fabiana and Pardo, Thiago and Benevenuto, Fabr{\'\i}cio", editor = "Calzolari, Nicoletta and B{\'e}chet, Fr{\'e}d{\'e}ric and Blache, Philippe and Choukri, Khalid and Cieri, Christopher and Declerck, Thierry and Goggi, Sara and Isahara, Hitoshi and Maegaard, Bente and Mariani, Joseph and Mazo, H{\'e}l{\`e}ne and Odijk, Jan and Piperidis, Stelios", booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference", month = jun, year = "2022", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2022.lrec-1.777", pages = "7174--7183", }



@article{Vargas_Carvalho_Pardo_Benevenuto_2024, author={Vargas, Francielle and Carvalho, Isabelle and Pardo, Thiago A. S. and Benevenuto, Fabrício}, title={Context-aware and expert data resources for Brazilian Portuguese hate speech detection}, DOI={10.1017/nlp.2024.18}, journal={Natural Language Processing},
year={2024}, pages={1–22}, url={https://www.cambridge.org/core/journals/natural-language-processing/article/contextaware-and-expert-data-resources-for-brazilian-portuguese-hate-speech-detection/7D9019ED5471CD16E320EBED06A6E923#}, }



FUNDING

SSC-logo-300x171