Crystal library for data analysis/manipulation. Inspired by Pandas
-
Add the dependency to your
shard.yml
:dependencies: cryzzly: github: franciscoGPS/cryzzly
-
Run
shards install
require "cryzzly"
# Load CSV file
df = Cryzzly::DataFrame(Any).load_data("my_csv.csv", index_col: 0, index_type: "datetime" )
# From matrix array
df = Dataframe(Float64).new([[1,2,3], [4,5,6]], ["col_1","col_2","col_3"])
# Return headers list
df.headers
# Sum of specified column keys
df.sum("col_1","col_2", "col_3")
# Mean of specified column keys
df.mean("col_1","col_2", "col_3")
# Amount of columns
df.length
# Shape of dataset
df.shape
# Minimum value of specified column keys
df.min("col_1","col_2", "col_3")
# Maximum value of specified column keys
df.max("col_1","col_2", "col_3")
# Standard deviation
df.std("col_1","col_2", "col_3")
# Uses Aquaplot to plot files. Stored on specified location
df.plot("col_1","col_2", filename: "my_plot")
## Output "Image stored in: my_plot.png"
df.to_csv("col_1","col_2", "col_3", filename: "my_csv")
## Output "File stored in: my_csv.csv"
- [] count
- [] unique
- [] top
- [] freq
- Fork it (https://github.com/your-github-user/cryzzly/fork)
- Create your feature branch (
git checkout -b my-new-feature
) - Commit your changes (
git commit -am 'Add some feature'
) - Push to the branch (
git push origin my-new-feature
) - Create a new Pull Request
- Francisco C. - Creator and maintainer