/vec-la-fp

↗️ A tiny (functional) 2d linear algebra library

Primary LanguageJavaScriptMIT LicenseMIT

vec-la-fp

Vec-la-fp is the functional version of the vec-la library. All functions are curried with arguments reordered to support composition. MatrixBuilder is replaced with composable calls to mRotate, mTranslate, mScale, mShear, and mCompose for arbitrary matrix concatenations.

Includes typescript types.

Installation

npm install --save vec-la-fp

and import or require as needed. If you need to use a standalone windowed version in a script tag:

<script src="node_modules/vec-la-fp/dist/vec.window.js"></script>

Features

  • Immutable functions for manipulating vectors and matrices
  • Vectors and matrices represented as pure, single dimensional arrays
  • Composable and fully (auto) curried
  • Typescript typings for all overloadings

API

vec.add(v, v2) - adds v and v2

vec.add3(v, v2, v3) - adds v, v2, v3

vec.addAll([v1, v2, ..., vN]) - adds all vectors together

vec.sub(v, v2) - subtracts v2 from v1

vec.sub3(v, v2, v3) - subtracts v, v2, v3

vec.subAll([v1, v2, ..., vN]) - subtracts all vectors together

vec.mag(v) - gets magnitude of v

vec.normal(v) - gets normal vector of v

vec.scale(sc, v) - scales v by sc

vec.towards(t, v, v2) - gets the vector at "time" t between v and v2

vec.lerp(v, v2, t) - towards, but with the t argument last

vec.scalarNear(e, n, n2) - true if n is within epsilon of n2

vec.near(e, v, v2) - true if every elment of v is near the same in v2

vec.clampMag(min, max, v) - a vector in the same direction as v with magnitude clamped to at least min and at most max

vec.norm(v) - normalises v

vec.mId - immutable identity matrix

vec.createMatrix(a, b, c, d, tx, ty) - helper function for creating matrices

vec.transform(m, v) - transform v by matrix m

vec.compose(m, m2) - compose matrices m and m2

vec.mRotate(a, m) - compose matrix m with a rotation matrix using angle a

vec.mTranslate(v, m) - compose matrix m with a translation matrix using vector v for x and y

vec.mId - The identity matrix

vec.mScale(v, m) - compose matrix m with a scale matrix using vector v for x and y

vec.mShear(v, m) - compose matrix m with a shear matrix using vector v for x and y

vec.rotate(a, v) - rotates v by angle a

vec.rotatePointAround(a, cp, v) - rotates v by angle a around control point vector cp

vec.midpoint(v, v2) - gets midpoint between v and v2

vec.alongAngle(a, r, v) - gets a vector r units along angle a from vector v

vec.dist(v, v2) - gets distance from v to v2

vec.fastDist(v, v2) - gets "fast" distance from v to v2 (no square root)

vec.dot(v, v2) - gets dot product of v and v2

vec.perpDot(v, v2) - the perpendicular dot product of v and v2 (sometimes called cross)

vec.triangleArea(a, b, c) - signed area of triangle abc

vec.colinear(a, b, c) - true if a b and c are colinear

vec.det(m) - calculates the determine of matrix m

Tree shaking

All the functions are exported for better tree shaking:

  • vAdd
  • vAdd3
  • vAddAll
  • vSub
  • vSub3
  • vSubAll
  • vMag
  • vNormal
  • vScale
  • vTowards
  • vLerp
  • vNorm
  • mId
  • vCreateMatrix
  • vTransform
  • mCompose
  • mRotate
  • mTranslate
  • mScale
  • mShear
  • vRotate
  • vRotatePointAround
  • vMidpoint
  • vAngle
  • vAlongAngle
  • vFastDist
  • vDist
  • vDot
  • vDet

Finally, when using the window version you can call vec.polute() to insert these functions into the global scope with the naming convention:

vFunctionName e.g vAdd, vMidpoint, vDot etc

and mCompose, mRotate etc for functions associated with matrices

Composing matrices

vec-la provided a dot-chain style API for building matrices, but since matrices compose the same as functions, this API can be captured via regular function composition. For example:

Note! The compose function below is function compose, not the vec.mCompose function for matrices

const M = compose(
  mTranslate([10, 20]),
  mShear([0.2, 0.3]),
  mScale([3.2, 2.3]),
  mRotate(1.5)
)(mId);

is equivilent to vec-la's:

const M = vMatrixBuilder()
  .rotate(1.5)
  .scale(3.2, 2.3)
  .shear(0.2, 0.3)
  .translate(10, 20)
  .get();

Tests

Clone the repository, and then run npm install && npm test.

Examples

(all examples assume vec is imported under vec)

Addition

const v1 = [0, 1];
const v2 = [1, 0];
const v3 = vec.add(v1, v2); // [1, 1]

Scaling

const v1 = [0, 1];
const scaler = 10;
const v2 = vec.scale(scaler, v1); // [0, 10]

Normalising

const v1 = [6.32, -23.1];
const v2 = vec.norm(v1); // [0.2638946146581466, -0.9645515187663272]

Magnitude

const v1 = [6.32, -23.1];
const mag = vec.mag(v1); // 23.948954048141644

Matrix Transform

const v1 = [10, 10];

// Inversion matrix
const m = [
  -1, 0,  0
   0, -1, 0,
   0,  0, 1
];
const v2 = vec.transform(m, v1); // [-10, -10]

Computing determinants

const m = [
  10, 0, 0,
  0, 10, 0,
  0,  0, 1
];
const d = vec.det(m); // 100