/Image_Detection_Assignments

Primary LanguageJupyter NotebookGNU General Public License v3.0GPL-3.0

Mathematical models and methods for Image Processing

Here are the assignments I worked on for the course "Mathematical models and methods for Image Processing" held by Prof. Giacomo Boracchi at Politecnico di Milano during the A.Y. 2023-2024.

Gradient Descent and Optimization

  • Gradient Descent (lez12_gradient_descent)
  • ISTA (lez13_ISTA)
  • FISTA (lez14_FISTA)
  • IRLS MOD for L1 Denoising (lez15_IRLS_MOD_l1denoising)

Dictionary Learning and Sparse Representations

  • DCT Images (Lez2_DCT_Images)
  • Sliding DCT (Lez3_SlidingDCT)
  • Matching Pursuit (lez6_matching_pursuit)
  • OMP (lez7_OMP)
  • KSVD (lez10_KSVD)
  • OMP Denoising (lez9_OMPdenoising)
  • Limitations of Sparsity (Lez4_limitations_of_sparsity)

Image Denoising and Inpainting

  • Non-Local Means (NLMeans) (lez18_NLMeans)
  • Inpainting (lez11_inpainting)

Anomaly Detection and Robust Fitting

  • Anomaly Detection (lez17_anomaly_detection)
  • Robust Fitting (lez22_Robust_Fitting)
  • Multi-model Fitting (lez24_Multi_model_fitting)

Local Polynomial Approximation (LPA)

  • LPA (lez20_LPA)
  • LPA-ICI (1D) (lez21_LPA_ICI)
  • LPA-ICI (2D) (lez23_LPA_ICI_2D)

Foundations

  • Orthonormal Basis (lez_1_orthonormal_basis)
  • Singular Value Decomposition (SVD) (Lez5_svd)

Each assignment demonstrates different techniques and algorithms applied to image processing tasks.