You may find the paper here: http://dl.acm.org/citation.cfm?id=3091485
If you use any part of the code or dataset, kindly cite our work as:
Bibtex:
@inproceedings{Ayala-Gomez:2017:WGR:3091478.3091485, author = {Ayala-G\'{o}mez, Frederick and Dar\'{o}czy, B\'{a}lint and Mathioudakis, Michael and Bencz\'{u}r, Andr\'{a}s and Gionis, Aristides}, title = {Where Could We Go?: Recommendations for Groups in Location-Based Social Networks}, booktitle = {Proceedings of the 2017 ACM on Web Science Conference}, series = {WebSci '17}, year = {2017}, isbn = {978-1-4503-4896-6}, location = {Troy, New York, USA}, pages = {93--102}, numpages = {10}, url = {http://doi.acm.org/10.1145/3091478.3091485}, doi = {10.1145/3091478.3091485}, acmid = {3091485}, publisher = {ACM}, address = {New York, NY, USA}, keywords = {group recommendation, location-based social networks, recommender systems}, }
ACM Ref:
Frederick Ayala-Gómez, Bálint Daróczy, Michael Mathioudakis, András Benczúr, and Aristides Gionis. 2017. Where Could We Go?: Recommendations for Groups in Location-Based Social Networks. In Proceedings of the 2017 ACM on Web Science Conference (WebSci '17). ACM, New York, NY, USA, 93-102. DOI: https://doi.org/10.1145/3091478.3091485
- Install python and virtualenv
- virtualenv venv
- source venv/bin/activate
- pip install -r requirements.txt
- Install Turi's GraphLab Create: You need to ask for an academic license
- source venv/bin/activate
- cd data_collection
- Use the template in data_collection/config/template.config as a reference and update it with your data
- Resolve the checkins using Foursaquare API
- source venv/bin/activate
- cd data_collection
- python foursquare2csv.py checkins_file output_dir
- A script that parses the checkins to pandas Dataframes:
- df_checkin_group.csv: checkin_id, group_id
- df_checkins.csv: checkin_beenHere, checkin_created_at, checkin_created_via, checkin_id, checkin_likes, checkin_timeZoneOffset, user_id, venue_id
- df_checkins_with.csv: checkin_id, user_id, with, group_id
- df_users.csv: user_firstname, user_gender, user_id, user_screen_name
- df_venues_categories.csv: category_id, category_name, category_pluralName, category_primary, category_shortName, venue_id
- df_venues.csv: venue_address, venue_cc, venue_checkinsCount, venue_city, venue_country, venue_id, venue_lat, venue_long, venue_name, venue_state, venue_tipCount, venue_usersCount, venue_verified
- A script that parses the checkins to pandas Dataframes:
- cd data_analysis/
- python run_analysis.py configuration_file
- Where:
- configuration_file: Your configuration for running the analysis
- python run_baselines.py configuration_file
- Where:
- configuration_file: Your configuration for running the baselines
- For privacy reasons, we cannot share a public link to the dataset. Please contact the main author for further information.