Self-Driving Car Engineer Nanodegree Program
Simulator. You can download the Term3 Simulator BETA which contains the Path Planning Project from the releases tab.
In this project your goal is to safely navigate around a virtual highway with other traffic that is driving +-10 MPH of the 50 MPH speed limit. You will be provided the car's localization and sensor fusion data, there is also a sparse map list of waypoints around the highway. The car should try to go as close as possible to the 50 MPH speed limit, which means passing slower traffic when possible, note that other cars will try to change lanes too. The car should avoid hitting other cars at all cost as well as driving inside of the marked road lanes at all times, unless going from one lane to another. The car should be able to make one complete loop around the 6946m highway. Since the car is trying to go 50 MPH, it should take a little over 5 minutes to complete 1 loop. Also the car should not experience total acceleration over 10 m/s^2 and jerk that is greater than 50 m/s^3.
Each waypoint in the list contains [x,y,s,dx,dy] values. x and y are the waypoint's map coordinate position, the s value is the distance along the road to get to that waypoint in meters, the dx and dy values define the unit normal vector pointing outward of the highway loop.
The highway's waypoints loop around so the frenet s value, distance along the road, goes from 0 to 6945.554.
The general algorithm is close to what was presented in the lectures and in the project walkthrough. The main entry point for the calculations is calcPath() in line 16 in path_planner.cpp.
First, the new target speed is calculated, see line 41. This function calcTargetSpeed() in line 128 identifies the closest leading vehicle in our lane and adapts the velocity accordingly. If there is another vehicle in front, the ego will try to change lane, see line 46 and line 169. The left and right lanes are checked for other vehicles. If the distance to the other vehicles is large, a lane safe is safe and the ego vehicle will change lane. If the lane change is not safe, the vehicle will slow down accordingly to avoid a collision, see line 157 and 162.
Next, the new vehicle path can be built, see line 51 and 197. The function setupNextPath takes the end of the previous path and adds a few future points in frenet coordinates first and transforms them to global world coordinates. These points are then transformed to local vehicle coordinates, see line 55 and 238. The advantage of the local coordinates is the fact that a spline can be clearly fitted, see line 66. The local x coordinate parametrizes this spline, otherwise there might be ambiguities to have multiple y values for the same x value.
The new path comprises the old path, see line 66 and 67 plus some new points along the spline. The function appendNewPoints() in line 69 and 260 does this job. It successively adapts the vehicle ego speed (see line 274 and 278) and appends new points along the spline. These points still need to be transformed to global world coordinates, see line 291.
This was a hard project! The solution presented in the walkthrough is surprisingly simple, however there are many pitfalls to get stuck:
- planning s and d independently might cause trouble in curves because acceleration might become too large
- handle latency from the simulator
- not updating the path every cycle makes the car too sluggish
Next step would be to improve the lane change decision. Currently the ego vehicle might get stuck on one lane if there is one vehicle ahead and another vehicle with a similar speed on the neighboring lane. In this case, an extended prepare lane change maneuver would be necessary. Besides a double lane change from lane 1 to 3 for example could be really helpful in some situations. Currently the algorithmn greedily chooses the next best lane but this is not optimal in any sense. In total, very few concepts from the lectures could be applied to this project. I think the project would be much easier if the asynchronous path update was removed as shown in the simple python example in the lectures. In total, I could not learn that much from this project.
- Clone this repo.
- Make a build directory:
mkdir build && cd build
- Compile:
cmake .. && make
- Run it:
./path_planning
.
Here is the data provided from the Simulator to the C++ Program
["x"] The car's x position in map coordinates
["y"] The car's y position in map coordinates
["s"] The car's s position in frenet coordinates
["d"] The car's d position in frenet coordinates
["yaw"] The car's yaw angle in the map
["speed"] The car's speed in MPH
//Note: Return the previous list but with processed points removed, can be a nice tool to show how far along the path has processed since last time.
["previous_path_x"] The previous list of x points previously given to the simulator
["previous_path_y"] The previous list of y points previously given to the simulator
["end_path_s"] The previous list's last point's frenet s value
["end_path_d"] The previous list's last point's frenet d value
["sensor_fusion"] A 2d vector of cars and then that car's [car's unique ID, car's x position in map coordinates, car's y position in map coordinates, car's x velocity in m/s, car's y velocity in m/s, car's s position in frenet coordinates, car's d position in frenet coordinates.
-
The car uses a perfect controller and will visit every (x,y) point it recieves in the list every .02 seconds. The units for the (x,y) points are in meters and the spacing of the points determines the speed of the car. The vector going from a point to the next point in the list dictates the angle of the car. Acceleration both in the tangential and normal directions is measured along with the jerk, the rate of change of total Acceleration. The (x,y) point paths that the planner recieves should not have a total acceleration that goes over 10 m/s^2, also the jerk should not go over 50 m/s^3. (NOTE: As this is BETA, these requirements might change. Also currently jerk is over a .02 second interval, it would probably be better to average total acceleration over 1 second and measure jerk from that.
-
There will be some latency between the simulator running and the path planner returning a path, with optimized code usually its not very long maybe just 1-3 time steps. During this delay the simulator will continue using points that it was last given, because of this its a good idea to store the last points you have used so you can have a smooth transition. previous_path_x, and previous_path_y can be helpful for this transition since they show the last points given to the simulator controller with the processed points already removed. You would either return a path that extends this previous path or make sure to create a new path that has a smooth transition with this last path.
A really helpful resource for doing this project and creating smooth trajectories was using http://kluge.in-chemnitz.de/opensource/spline/, the spline function is in a single hearder file is really easy to use.
- cmake >= 3.5
- All OSes: click here for installation instructions
- make >= 4.1
- Linux: make is installed by default on most Linux distros
- Mac: install Xcode command line tools to get make
- Windows: Click here for installation instructions
- gcc/g++ >= 5.4
- Linux: gcc / g++ is installed by default on most Linux distros
- Mac: same deal as make - [install Xcode command line tools]((https://developer.apple.com/xcode/features/)
- Windows: recommend using MinGW
- uWebSockets
- Run either
install-mac.sh
orinstall-ubuntu.sh
. - If you install from source, checkout to commit
e94b6e1
, i.e.git clone https://github.com/uWebSockets/uWebSockets cd uWebSockets git checkout e94b6e1
- Run either
We've purposefully kept editor configuration files out of this repo in order to keep it as simple and environment agnostic as possible. However, we recommend using the following settings:
- indent using spaces
- set tab width to 2 spaces (keeps the matrices in source code aligned)
Please (do your best to) stick to Google's C++ style guide.
Note: regardless of the changes you make, your project must be buildable using cmake and make!
Help your fellow students!
We decided to create Makefiles with cmake to keep this project as platform agnostic as possible. Similarly, we omitted IDE profiles in order to ensure that students don't feel pressured to use one IDE or another.
However! I'd love to help people get up and running with their IDEs of choice. If you've created a profile for an IDE that you think other students would appreciate, we'd love to have you add the requisite profile files and instructions to ide_profiles/. For example if you wanted to add a VS Code profile, you'd add:
- /ide_profiles/vscode/.vscode
- /ide_profiles/vscode/README.md
The README should explain what the profile does, how to take advantage of it, and how to install it.
Frankly, I've never been involved in a project with multiple IDE profiles before. I believe the best way to handle this would be to keep them out of the repo root to avoid clutter. My expectation is that most profiles will include instructions to copy files to a new location to get picked up by the IDE, but that's just a guess.
One last note here: regardless of the IDE used, every submitted project must still be compilable with cmake and make./