This is the official implementation of the paper "MIA-Tuner: Adapting Large Language Models as Pre-training Text Detector". The proposed MIA-Tuner is implemented as follows.
- torch>=2.2.0
- accelerate==0.32.1
- transformers==4.42.4
- huggingface_hub==0.23.4
- datasets==2.20.0
- deepeval==0.21.73
- langchain==0.2.14
- Wikipedia_API==0.6.0
- numpy>=1.24.4
- scikit-learn>=1.1.3
- pyyaml>=6.0
- tqdm>=4.64.1
Dependency can be installed with the following command:
pip install -r requirements.txt
In this repo, we provide an all-in-one script run_baselines.py for running all exiting baselines in one commond.
python run_baselines.py --model ${model} --dataset ${DATASET_NAME} --block_size ${BLOCK_SIZE}
-
Aligned LLMs
accelerate launch mia_hybrid.py -m ${model} --unaligned_model -d ${DATASET_NAME} \ --block_size ${BLOCK_SIZE} --epochs ${EPOCHS} --batch_size ${BATCH_SIZE} --learning_rate ${LEARNING_RATE} \ --gradient_accumulation_steps ${GRADIENT_ACCUMULATION_STEPS}
-
Unligned LLMs
accelerate launch mia_hybrid.py -m ${model} --unaligned_model -d ${DATASET_NAME} \ --block_size ${BLOCK_SIZE} --epochs ${EPOCHS} --batch_size ${BATCH_SIZE} --learning_rate ${LEARNING_RATE} \ --gradient_accumulation_steps ${GRADIENT_ACCUMULATION_STEPS}
All scripts for reproducing results in our paper can be found in ./exp_scripts