/Hef.Math.Interpreter

An interpreter that computes a math formula (string) into a numeric result.

Primary LanguageC#MIT LicenseMIT

Hef.Math.Interpreter

GitHub release NuGet license Say Thanks!

An interpreter that takes a math formula (string) as input, breaks it into a chain of values and operations, and outputs a numeric result. It also handles variable declarations as key/value pairs.

Getting Started

Prerequisites

This software is based on the .Net 2.0 Framework and has no other dependencies.

Installing

There is different options to get it into your own projet.

Github

Clone the repository, or copy/paste the code into your solution.

git clone https://github.com/fsegaud/Hef.Math.Interpreter.git

NuGet Package

You can also install the correpsonding NuGet package at https://www.nuget.org/packages/Hef.Math.Interpreter

Or install it using the NuGet console.

Install-Package Hef.Math.Interpreter -Version 1.1.1

Examples

The interpreter accepts two notation styles. Operations can be written as functions with parenthesis and arguments, or like regular operations with a symbol. There is actually no difference between functions and symbols in the implementation. For instance, the addition can be written add(1, 2) or 1 + 2. Or even add 1 2 or +(1, 2) if you like it.

The complete list of handled operations is availablable at Annex - Handled Operations.

Here is a simple example.

Interpreter interpreter = new Interpreter();
double result = interpreter.Calculate("sqrt(4) + 2"); // -> 4

The following example highlights the use of manually registered local and global variables.

Interpreter interpreter = new Interpreter();
Interpreter.SetGlobalVar("foo", 1d);
interpreter.SetVar("bar", 2d);
double result = interpreter.Calculate("($foo + $bar) * 2"); // -> 6

The following example highlights the use of Hef.Math.IInterpreterContext, that allows the interpreter to access variables provided by other objects.

Interpreter interpreter = new Interpreter();
interpreter.SetContext("player", new Player()));
double result = interpreter.Calculate("$player.level - 1"); // -> 9

class Player : Hef.Math.IInterpreterContext
{
    private int level = 10;

    public bool TryGetVariable(string name, out double value)
    {
        value = 0d;

        if (name == "level")
        {
            value = this.level;
            return true;
        }

        return false;
    }
}

Note About Caching

Each time a formula is calculated, the interpreter has to breaks the formula into nodes and build a tree of operations. This is a time-consumming process.

In order to make it faster, each time a new formula is processed, the intrepreder will keep the generated tree in memory (up to 64). So if the same formula is used again, the tree will be reused, and only the mathematical operations will be recomputed.

If for some reason the cache has to be manually cleared, the Interpreter provides a function to do so.

Interpreter.ForceClearCache();

Contributing

How To Define Additional Operations

The interpreter handles the basic mathmatical operations. If you need more, everything you have to do is open the Interpreter.Operators.cs file, and derive from the corresponding Node class :

  • ZeroNode that takes 0 argument.
  • UnaryNode that takes 1 argument.
  • BinaryNode that takes 2 arguments.

Then add the OperatorAttribute and fill the symbol and priority.

INFO: The OperatorAttribute is stackable.

INFO: Lowest priorities are executed first. Default priority is 2 (functions).

The following example show the implementation of an operator that halves an operand (unary operator). Its symbols will be # and half.

[Operator("#", 2)]
[Operator("half", 2)]
private class HalfNode : UnaryNode
{
    public HalfNode(Node input)
        : base(input)
    {
    }
    
    public override double GetValue(Interpreter interpreter)
    {
        return this.input.GetValue(interpreter) * .5d;
    }
}

The recompile the DLL, and it's done!

Interpreter interpreter = new Interpreter();
double a = interpreter.Calculate("#10"); // -> 5
double b = interpreter.Calculate("half(10)"); // -> 5

DO make a pull request if you want. More operators makes the interpreter better 😄

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Annex - Handled Operations

Category Function Symbol Operation Comment
BASIC sign ± Sign Change -1 should be written ±1 (atl+0177)
add + Addition
sub - Subtraction
mult * Product
div / Division
mod % Modulo
ADVACED pow ^ Power
sqrt Square Root
abs Absolute Value
round Round To Integer
min Minimum
max Maximum
ceil Ceil To Upper Integer
floor Floor To Lower Integer
trunc Truncate Decimal Part
log Logarithm
log10 Logaritme Base 10
exp e Exponential
COMPARISON eq == Equal Returns 1 if true, 0 otherwise
ne != Not Equal Returns 1 if true, 0 otherwise
gt > Greater Than Returns 1 if true, 0 otherwise
gte >= Greater Or Equal Returns 1 if true, 0 otherwise
lt < Less Than Returns 1 if true, 0 otherwise
lte <= Less Or Equal Returns 1 if true, 0 otherwise
LOGICAL ! Not !true => 0, !false => 1
and && And true && true => 1, true && false => 0
or || Or true || false => 1, false || false => 0
TRIGONOMETRY cos Cosine
sin Sine
tan Tangent
acos Arccosine
asin Arcsine
atan Arctangent
cosh Hyperbolic Cosine
sinh Hyperbolic Sine
tanh Hyperbolic Tangent
deg2rad Converts degrees to radians
rad2deg Converts radians to degrees
RANDOMIZATION rand Random random(a, b) => [a, b]
dice d or D Dice dice(a, b) or a D b => [a, a * b]
CONSTANTS pi Value of PI 3.14159...
true True 1
false False 0