Shape Robust Text Detection with Progressive Scale Expansion Network
- Python 2.7
- PyTorch v0.4.1+
- pyclipper
- Polygon2
- OpenCV 3.4 (for c++ version pse)
- opencv-python 3.4
Progressive Scale Expansion Network (PSENet) is a text detector which is able to well detect the arbitrary-shape text in natural scene.
CUDA_VISIBLE_DEVICES=0,1,2,3 python train_ic15.py
CUDA_VISIBLE_DEVICES=0 python test_ic15.py --scale 1 --resume [path of model]
Eval script for ICDAR 2015 and SCUT-CTW1500
cd eval
sh eval_ic15.sh
sh eval_ctw1500.sh
Performance (new version paper)
Method |
Extra Data |
Precision (%) |
Recall (%) |
F-measure (%) |
FPS (1080Ti) |
Model |
PSENet-1s (ResNet50) |
- |
81.49 |
79.68 |
80.57 |
1.6 |
baiduyun(extract code: rxti) |
PSENet-1s (ResNet50) |
pretrain on IC17 MLT |
86.92 |
84.5 |
85.69 |
3.8 |
baiduyun(extract code: aieo) |
PSENet-4s (ResNet50) |
pretrain on IC17 MLT |
86.1 |
83.77 |
84.92 |
3.8 |
baiduyun(extract code: aieo) |
Method |
Extra Data |
Precision (%) |
Recall (%) |
F-measure (%) |
FPS (1080Ti) |
Model |
PSENet-1s (ResNet50) |
- |
80.57 |
75.55 |
78.0 |
3.9 |
baiduyun(extract code: ksv7) |
PSENet-1s (ResNet50) |
pretrain on IC17 MLT |
84.84 |
79.73 |
82.2 |
3.9 |
baiduyun(extract code: z7ac) |
PSENet-4s (ResNet50) |
pretrain on IC17 MLT |
82.09 |
77.84 |
79.9 |
8.4 |
baiduyun(extract code: z7ac) |
Performance (old version paper)
Method |
Precision (%) |
Recall (%) |
F-measure (%) |
PSENet-4s (ResNet152) |
87.98 |
83.87 |
85.88 |
PSENet-2s (ResNet152) |
89.30 |
85.22 |
87.21 |
PSENet-1s (ResNet152) |
88.71 |
85.51 |
87.08 |
Method |
Precision (%) |
Recall (%) |
F-measure (%) |
PSENet-4s (ResNet152) |
75.98 |
67.56 |
71.52 |
PSENet-2s (ResNet152) |
76.97 |
68.35 |
72.40 |
PSENet-1s (ResNet152) |
77.01 |
68.40 |
72.45 |
Method |
Precision (%) |
Recall (%) |
F-measure (%) |
PSENet-4s (ResNet152) |
80.49 |
78.13 |
79.29 |
PSENet-2s (ResNet152) |
81.95 |
79.30 |
80.60 |
PSENet-1s (ResNet152) |
82.50 |
79.89 |
81.17 |
Method |
Precision (%) |
Recall (%) |
F-measure (%) |
PSENet-1s (ResNet152) |
78.5 |
72.1 |
75.2 |
Figure 3: The results on ICDAR 2015, ICDAR 2017 MLT and SCUT-CTW1500
[new version paper] https://arxiv.org/abs/1903.12473
[old version paper] https://arxiv.org/abs/1806.02559
[tensorflow version (thanks @liuheng92)] https://github.com/liuheng92/tensorflow_PSENet