This repository is used to manage our team's code and document sharing. I hope everyone can gain a lot from this cooperation.
You can download the dataset in MICCAI chanllenge ,url: https://learn2reg.grand-challenge.org/Datasets/
or You can download the dataset in Baidu cloud: 链接:https://pan.baidu.com/s/1GN2_7KHCeZEvX5ECdQ4A3g 提取码:wsgk
The validation and test dataset have been published in Release
We hope that we can have some insights and record them in the process of research. It is recommended to use the markdown .
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
conda install batchgenerators
conda install natsort
conda install pystrum
conda install nibabel
conda install ml_collections
conda install timm
If you want to reproduce our work, you can do it with the following command !
- Train
python ./script/VoxelMoprh/train.py
- Test
python ./script/VoxelMoprh/infer.py
- file description
file/folder | function |
---|---|
data | Generate dataset inputs |
Model | The overall framework of the VoxelMorph model |
infer.py | test model |
losses.py | Loss function |
seg35_labels.txt | Segmentation map label description, used to finally calculate the dsc for each class |
train.py | train model |
utils.py | Basic functions and classes that compute some metrics and implement some basic transformations |
- Train
python ./script/CycleMoprh/train_CycleMorph.py
- Test
python ./script/CycleMoprh/infer.py
- file description
file/folder | function |
---|---|
data | Generate dataset inputs |
Model | The overall framework of the CycleMoprh model |
infer.py | test model |
losses.py | Loss function |
seg35_labels.txt | Segmentation map label description, used to finally calculate the dsc for each class |
train_CycleMorph.py | train model |
utils.py | Basic functions and classes that compute some metrics and implement some basic transformations |
- Train
python ./script/ConsMoprh/train_Consmorph.py
- Test
python ./script/ConsMoprh/infer.py
- file description
file/folder | function |
---|---|
data | Generate dataset inputs |
Model | The overall framework of the ConsMoprh model |
infer.py | test model |
losses.py | Loss function |
seg35_labels.txt | Segmentation map label description, used to finally calculate the dsc for each class |
train_CycleMorph.py | train model |
utils.py | Basic functions and classes that compute some metrics and implement some basic transformations |
-
Train
python ./script/TransMorph/train_TransMorph.py
-
Test
python ./script/TransMorph/infer_TransMorph.py
-
代码文件说明
file/folder 作用 data Generate dataset inputs models The overall framework of the TransMorph model convert_nii_to_pkl.py Convert nii.gz file to pkl infer_TransMorph.py test model losses.py Loss function seg35_labels.txt Segmentation map label description, used to finally calculate the dsc for each class train_TransMorph.py train model utils.py Basic functions and classes that compute some metrics and implement some basic transformations
-
训练模型
python ./script/nnFormer/train_TransMorph.py
-
测试模型
python ./script/nnFormer/infer_TransMorph.py
-
代码文件说明
文件/文件夹 作用 data Generate dataset inputs models The overall framework of the nnFormer model img0438.nii.gz The data of the subject numbered 0438 in the test set is used to obtain affine in the test phase infer_nnFormer.py test model losses.py Loss function seg35_labels.txt Segmentation map label description, used to finally calculate the dsc for each class train_nnFormer.py train model utils.py 计算一些指标和实现一些基本变换的基本函数和类 val_nnFormer.py Evaluate the model
-
测试模型
python ./script/SyN/infer_SyN.py
-
代码文件说明
文件/文件夹 作用 data Generate dataset inputs infer_SyN.py test model seg35_labels.txt Segmentation map label description, used to finally calculate the dsc for each class utils.py 计算一些指标和实现一些基本变换的基本函数和类