Using yolo v3 object detection on ios platform.
Run tiny_model.xcodeproj in ios.
The training process mainly consults qqwweee/keras-yolo3. We add yolov3 with Densnet.
- python 3.6.4
- keras 2.1.5
- tensorflow 1.6.0
Generate datasets with VOC format. And try python voc_annotations
.
cd yolov3_with_Densenet
For yolo model with darknet:
wget https://pjreddie.com/media/files/darknet53.conv.74
- rename it as darknet53.weights
python convert.py -w darknet53.cfg darknet53.weights model_data/darknet53_weights.h5
python yolov3_train.py
, with model_data/darknet53_weights.h5 as pre-trained model
For yolo model with densenet:
python densenet_train.py
, with model_data/dense121_weights.h5 as pre-trained model
virtualenv -p /usr/bin/python2.7 keras_coreml_virt
source keras_coreml_virt/bin/activate
pip install protobuf
pip install tensorflow==1.6.0
pip install keras==2.1.5
pip install h5py
pip install coremltools==0.8.0
python coreml.py
- open tiny_model.xcodeproj with Xcode 9+
- change the .mlmodel file and Target Menmbership
For yolo model with darknet or densenet
- modify the code from line 43 to line 49 in YOLO.swift
- change the labels and the anchors in Helpers.swift
- run the project
For tiny model
- just change the labels and run the project