/OneNIP

[ECCV 2024] Learning to Detect Multi-class Anomalies with Just One Normal Image Prompt

Primary LanguagePython

[ECCV 2024] OneNIP

Official PyTorch Implementation of Learning to Detect Multi-class Anomalies with Just One Normal Image Prompt, Accepted by ECCV 2024.

Image text

OneNIP mainly consists of Unsupervised Reconstruction, Unsupervised Restoration, and Supervised Refiner. Unsupervised Reconstruction and Unsupervised Restoration share the same encoder-decoder architectures and weights. Supervised Refiner is implemented by two transposed convolution blocks, and each following a 1×1 convolution layer.

  • Unsupervised Reconstruction reconstructs normal tokens;
  • Unsupervised Restoration restores pseudo anomaly tokens to the corresponding normal tokens;
  • Supervised Refiner refines reconstruction/restoration errors to achieve more accurate anomaly segmentation.

1. Comparsions of OneNIP and UniAD

Alt text

2. Results and checkpoints-v2.

All pre-trained model weights are stored in Google Drive.

Dataset Input-Reslution I-AUROC P-AUROC P-AUAP checkpoints-v2 Test-Log
MVTec 224 $\times$ 224 98.0 97.9 63.9 model weight testlog
MVTec 256 $\times$ 256 97.9 97.9 64.8 model weight testlog
MVTec 320 $\times$ 320 98.4 98.0 66.7 model weight testlog
VisA 224 $\times$ 224 92.8 98.7 42.5 model weight testlog
VisA 256 $\times$ 256 93.4 98.9 44.9 model weight testlog
VisA 320 $\times$ 320 94.8 98.9 46.1 model weight testlog
BTAD 224 $\times$ 224 93.2 97.4 56.3 model weight testlog
BTAD 256 $\times$ 256 95.2 97.6 57.7 model weight testlog
BTAD 320 $\times$ 320 96.0 97.8 58.6 model weight testlog
MVTec+VisA+BTAD 224 $\times$ 224 94.6 98.0 53.5 model weight testlog
MVTec+VisA+BTAD 256 $\times$ 256 94.9 98.0 53.1 model weight testlog
MVTec+VisA+BTAD 320 $\times$ 320 95.6 97.9 54.1 model weight testlog

3. Evaluation and Training

3.1 Prepare data

Download MVTec, BTAD, VisA and DTD datasets. Unzip and move them to ./data. The data directory should be as follows.

├── data
│   ├── btad
│   │   ├── 01
│   │   ├── 02
│   │   ├── 03
│   │   ├── test.json
│   │   ├── train.json
│   ├── dtd
│   │   ├── images
│   │   ├── imdb
│   │   ├── labels
│   ├── mvtec
│   │   ├── bottle
│   │   ├── cable
│   │   ├── ...
│   │   └── zipper
│   │   ├── test.json
│   │   ├── train.json
│   ├── mvtec+btad+visa
│   │   ├── 01
│   │   ├── bottle
│   │   ├── ...
│   │   └── zipper
│   │   ├── test.json
│   │   ├── train.json
│   ├── visa
│   │   ├── candle
│   │   ├── capsules
│   │   ├── ...
│   │   ├── pipe_fryum
│   │   ├── test.json
│   │   ├── train.json

3.2 Evaluation with pre-trained checkpoints-v2

Download pre-trained checkpoints-v2 to ./checkpoints-v2

cd ./exps
bash eval_onenip.sh 8 0,1,2,3,4,5,6,7

3.3 Training OneNIP

cd ./exps
bash train_onenip.sh 8 0,1,2,3,4,5,6,7

Citing

If you find this code useful in your research, please consider citing us:

@inproceedings{gao2024onenip,
  title={Learning to Detect Multi-class Anomalies with Just One Normal Image Prompt},
  author={Gao, Bin-Bin},
  booktitle={18th European Conference on Computer Vision (ECCV 2024)},
  pages={-},
  year={2024}
}

Acknowledgement

Our OneNIP is build on UniAD. Thank the authors of UniAD for open-sourcing their implementation codes!